

# RS485 USER'S MANUAL FRENIC Miniseries FRENIC ECOseries



User's Manual for RS485 Communications Card

Copyright © 2003-2004 Fuji Electric FA Components & Systems Co., Ltd. All rights reserved.

The copyright in this user's manual belongs to Fuji Electric FA Components & Systems Co., Ltd. This manual may not be reprinted or reproduced, in whole or in part, except as may be expressly permitted by Fuji Electric FA Components & Systems Co., Ltd.

Microsoft and Windows are registered trademarks or trademarks of Microsoft Corporation, U.S. The other company and product names used herein are generally trademarks or registered trademarks of other companies.

Any information contained herein is subject to change without prior notice for improvement.

# Preface

The functions such as remote operation from the keypad and RS485 communications can be expanded using the RJ-45 connector for connecting the keypad (modular jack) and RS485 communications card (option) equipped on the inverter. This manual describes the functional expansion. For the handling of the inverter, see each User's Manual and Instruction Manual.

Please read through this user's manual to familiarize yourself with proper use. Improper handling or misuse may result in malfunction, shorter service life or failure.

The following shows relevant documents. Use the documents according to your purpose.

#### **FRENIC-Mini**

| Name                                             | Document number | Description                                                                                                                                                               |
|--------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| User's Manual                                    | MEH446          | Overview of FRENIC-Mini, how to operate the keypad,<br>control block diagram, selection of peripherals,<br>capacity selection, specifications, function codes, etc.       |
| Catalog                                          | MEH441          | Overview of FRENIC-Mini, features, specifications, outline drawing, options, etc.                                                                                         |
| Instruction Manual                               | INR-SI47-0791-E | Inspection at the time of product arrival, installation<br>and wiring, how to operate the keypad,<br>troubleshooting, maintenance and inspection,<br>specifications, etc. |
| RS485 communications card<br>Installation Manual | INR-SI47-0773   | Inspection at the time of arrival, how to install the product                                                                                                             |

#### **FRENIC-Eco**

| Name                                             | Document number | Description                                                                                                                                                               |
|--------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| User's Manual                                    | MEH456          | Overview of FRENIC-Eco, how to operate the keypad,<br>control block diagram, selection of peripherals,<br>capacity selection, specifications, function codes, etc.        |
| Catalog                                          | MEH442          | Overview of FRENIC-Eco, features, specifications, outline drawing, options, etc.                                                                                          |
| Instruction Manual                               | INR-SI47-0882-E | Inspection at the time of product arrival, installation<br>and wiring, how to operate the keypad,<br>troubleshooting, maintenance and inspection,<br>specifications, etc. |
| RS485 communications card<br>Installation Manual | INR-SI47-0872   | Inspection at the time of arrival, how to install the product                                                                                                             |

These documents are subject to revision as appropriate. Obtain the latest versions when using the product.

# Safety Precautions

Prior to installation, connection (wiring), operation, maintenance or inspection, read through this user's manual as well as the instruction and installation manuals to ensure proper operation of the product. Familiarize yourself with all information required for proper use, including knowledge relating to the product, safety information, and precautions.

This user's manual classifies safety precautions as shown below according to the severity of the accident that may occur if you fail to observe the precaution:

| Failure to heed the information indicated by this symbol may lead to dangerous conditions, possibly resulting in death or serious bodily injuries.                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Failure to heed the information indicated by this symbol may lead to dangerous conditions, possibly resulting in minor or light bodily injuries and/or substantial property damage. |

Failure to heed the information contained under the CAUTION title can also result in serious consequences. These safety precautions are of utmost importance and must be observed at all times.

# 

The FRENIC-Mini/Eco is not designed for use in appliances and machinery on which lives depend. Consult Fuji before considering the FRENIC-Mini/Eco series of inverters for equipment and machinery related to nuclear power control, aerospace uses, medical uses or transportation. When the product is to be used with any machinery or equipment on which lives depend or with machinery or equipment which could cause serious loss or damage should this product malfunction or fail, ensure that appropriate safety devices and/or equipment are installed.

#### Wiring

## 

- Before starting wiring, confirm that the power is turned OFF (open). An electric shock may result.

# 

- The product cannot be connected directly to an RS232C interface.
- Before connecting wiring to the RJ-45 connector (modular jack) for connecting the keypad, equipped on the inverter (FRENIC-Eco) or the RJ-45 connector (modular jack) on the RS485 communications card (option) (FRENIC-Mini), confirm the wiring of the device to be connected. For further information, see "2.2 Connections" under Chapter 2 of this manual. **Failure may result.**

#### Operation

#### 

Note that the inverter starts to supply power to the motor and the motor runs upon resetting of an alarm with the operation command ON (closed).
 An accident may result.

# Table of Contents

| CHAPTER | 1 OVERVIEW                                                                  |      |
|---------|-----------------------------------------------------------------------------|------|
| 1.1 Fe  | eatures                                                                     | 1-1  |
| 1.2 Di  | ifferences in the Inverter Series                                           | 1-2  |
| 1.3 Li  | st of Functions                                                             | 1-3  |
| CHAPTER | 2 COMMON SPECIFICATIONS                                                     |      |
| 2.1 Sp  | pecifications of RS485 Communications                                       | 2-1  |
| 2.1.1   | Specification of the RJ-45 connector for RS485 communications (modular jack | .)   |
| 2.1.2   | Specification of connection cable                                           | 2-2  |
| 2.1.3   | Specification of the terminal for RS485 communications                      | 2-3  |
| 2.1.4   | Specification of connection cable for RS485 terminal                        | 2-3  |
| 2.2 C   | onnections                                                                  | 2-4  |
| 2.2.1   | Basic connection                                                            | 2-4  |
| 2.2.2   | Connection procedures                                                       | 2-7  |
| 2.2.3   | Devices for connection                                                      | 2-11 |
| 2.2.4   | Measures against noise                                                      | 2-12 |
| 2.3 Sv  | witching to Communications                                                  | 2-14 |
| 2.3.1   | Functions for the switching                                                 | 2-14 |
| 2.3.2   | Link functions (operation selection)                                        | 2-15 |
| 2.3.3   | How to switch communications enabled/disabled                               | 2-16 |
| 2.3.4   | Link functions for supporting data input (operation select)                 | 2-17 |
| 2.4 M   | aking RS485-related Settings                                                | 2-18 |
| 2.4.1   | Link function (RS485 setting)                                               | 2-18 |
| CHAPTER | 3 Modbus RTU PROTOCOL                                                       |      |
| -       | essages                                                                     |      |
| 3.1.1   | Message formats                                                             |      |
| 3.1.2   | Message types                                                               |      |
| 3.1.3   | Message frames                                                              |      |
| 3.1.4   | Message categories                                                          |      |
| 3.1.5   | Communications examples                                                     |      |
| 3.2 H   | ost Side Procedures                                                         |      |
| 3.2.1   | Inverter's response time                                                    |      |
| 3.2.2   | Timeout processing                                                          |      |
| 3.2.3   | Receiving preparation complete time and message timing from the host        |      |
| 3.2.4   | Frame synchronization method                                                |      |
| 3.3 C   | ommunications Errors                                                        | 3-15 |
| 3.3.1   | Categories of communications errors                                         |      |
| 3.3.2   | Operations in case of errors                                                | 3-16 |
| 3.4 C   | RC-16                                                                       |      |
| 3.4.1   | Overview of the CRC-16                                                      | 3-19 |
| 3.4.2   | Algorithm                                                                   | 3-19 |
| 3.4.3   | Calculation example                                                         | 3-21 |
| 3.4.4   | Frame length calculation                                                    |      |

CHAPTER 4 FUJI GENERAL-PURPOSE INVERTER PROTOCOL

| 4.1 | Mes | ssages                                                               | 4-1  |
|-----|-----|----------------------------------------------------------------------|------|
| 4.1 | .1  | Message formats                                                      | 4-1  |
| 4.1 | .2  | Transmission frames                                                  |      |
| 4.1 | .3  | Descriptions of fields                                               | 4-10 |
| 4.1 | .4  | Communications examples                                              | 4-12 |
| 4.2 | Hos | st Side Procedures                                                   | 4-14 |
| 4.2 | .1  | Inverter's response time                                             | 4-14 |
| 4.2 | .2  | Timeout processing                                                   | 4-15 |
| 4.2 | .3  | Receiving preparation complete time and message timing from the host | 4-15 |
| 4.3 | Cor | nmunications Errors                                                  | 4-16 |
| 4.3 | 5.1 | Categories of communications errors                                  | 4-16 |
| 4.3 | .2  | Operations in case of communications errors                          | 4-17 |

#### CHAPTER 5 FUNCTION CODES AND DATA FORMATS

| 5.1 Con  | nmunications Dedicated Function Codes         | 5-1  |
|----------|-----------------------------------------------|------|
| 5.1.1    | About communications dedicated function codes | 5-1  |
| 5.1.2    | Command data                                  | 5-1  |
| 5.1.3    | Monitor data                                  | 5-6  |
| 5.1.4    | Information displayed on the keypad           | 5-10 |
| 5.2 Data | a Formats                                     | 5-18 |
| 5.2.1    | List of data format numbers                   | 5-18 |
| 5.2.2    | Data format specifications                    |      |

# CHAPTER 1 OVERVIEW

This chapter describes the functions that can be realized by performing RS485 communications.

#### Table of Contents

| 1.1 | Features                           | 1-1 |
|-----|------------------------------------|-----|
| 1.2 | Differences in the Inverter Series | 1-2 |
| 1.3 | List of Functions                  | 1-3 |

# 1.1 Features

The functions listed below can be implemented using RS485 communications.

- The keypad can be mounted on the easy-to-access front of control panel with an extension cable (option).
- The function code data of the inverter can be edited and the operation status of the inverter can be monitored by connecting it to a personal computer on which inverter support software runs (see the "Inverter Support Software FRENIC Loader Instruction Manual").
- The inverter can be controlled as a subordinate device (slave) by connecting it to an upper level device (host (master)) such as a PLC or personal computer.

As the communication protocols for controlling inverter, the Modbus RTU widely used by a variety of appliances, and the Fuji general-purpose inverter protocol common to Fuji's inverters are available.

#### Modbus RTU protocol

The Modbus RTU protocol is a set of communications specifications defined to connect Modicon's PLCs (Programmable Logic Controllers) in a network. A network is established between PLCs or between a PLC and another slave unit(s) (inverter(s), etc.). The main functions include:

- supporting both a query-response format and a broadcast format for messages.
- enabling the host unit as the master to transmit queries to each inverter as a slave, and each slave to send back responses to the queries to the master.
- supporting two modes, RTU mode and ASCII mode, as transmission mode for the standard Modbus Protocol. FRENIC-Mini/Eco supports the RTU mode only, which provides a high transmission density.
- performing an error check through a CRC (cyclic redundancy check) to ensure accurate data transmission.

#### Fuji general-purpose inverter protocol

This protocol is commonly used for all models of Fuji's general-purpose inverters. The main functions include:

- enabling, as a common protocol, operation of all models of Fuji's general-purpose inverters with the same host program (function codes cannot be generally edited because specifications are different among models).
- adopting fixed-length transmission frames as standard frames to facilitate developing communication control programs for hosts.
- reducing the communications time in response to operation commands and frequency setting which are required quick response by using optional transmission frames.



- J- Since the protocol switches to the keypad dedicated protocol automatically by connecting the keypad, it is not necessary to set up the communications- related functions.
- Although the personal computer loader uses a dedicated protocol for loader commands, part of the communications conditions must be set. (For further information, see the "Inverter Support Software FRENIC Loader Instruction Manual (INR-S147-0903-E).")
- With regard to a FRENIC-Mini that uses inverter ROM 0399 or earlier version, part of the RTU protocol functions are restricted. Contact us for these restrictions. Confirm the ROM version according to the menu "5\_14" described in "3.2.2 [5] Reading Maintenance Information" under Chapter 3 of the FRENIC-Mini Instruction Manual (INR-SI47-0791-E).

Chap. 1

OVERVIEW

# **1.2** Differences in the Inverter Series

RS485 communications is supported differently depending on the model of the inverter series.

|             |                                              |                    |                                       | Supported                                 | functions*3     |                                                  |
|-------------|----------------------------------------------|--------------------|---------------------------------------|-------------------------------------------|-----------------|--------------------------------------------------|
| Series      | Support method                               | Connector          | Keypad*1                              | Inverter<br>support<br>loader<br>software | Modbus<br>RTU*2 | Fuji general-<br>purpose<br>inverter<br>protocol |
| FRENIC-Mini | RS485<br>communications<br>card (option)     | RJ-45<br>connector | Only remote<br>keypad is<br>supported | 0                                         | 0               | 0                                                |
| FRENIC-Eco  | Connector for a<br>keypad on the<br>inverter | RJ-45<br>connector | 0                                     | 0                                         | 0               | 0                                                |
|             | RS485<br>communications<br>card*4 (option)   | Terminal<br>block  | ×                                     | ×                                         | 0               | 0                                                |

Table 1.1 Differences in the inverter series

\*1 FRENIC-Mini supports the remote keypad (TP-E1: option) only. For FRENIC-Eco, the keypad is mounted on the inverter as the standard equipment. In addition, the multi-function keypad can also be connected as an option.

\*2 The Modbus RTU of FRENIC-Eco supports coil commands unlike the Modbus RTU of FRENIC-Mini. For details, refer to chapter 3 "Modbus RTU Protocol."

- \*3 Each supported function has a different support scope depending on the inverter series, for example, data monitored by the keypad, loader function, and accessible function codes. For details, refer to the manual of each supported function.
- \*4 Use function codes y11 to y20 for communications setting of the RS485 communications card (option) of FRENIC-Eco.

# 1.3 List of Functions

The functions listed below become available by operating the appropriate function codes from the host controller.

The chapters that follow describe these functions in detail.

| Table 1.2 | List of RS485 communications functions |
|-----------|----------------------------------------|
|           |                                        |

| Function      | Description                                                                                                                                                               |                                           |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Operation     | The functions equivalent to the terminal functions shown below can be executed through communications:                                                                    | S codes<br>(dedicated                     |
|               | -Forward operation command "FWD" and reverse operation<br>command "REV"                                                                                                   | to communi-<br>cations)                   |
|               | -Digital input commands ([FWD], [REV], [X1] - [X5] terminals)<br>([X4] and [X5] are not supported by FRENIC-Mini.)                                                        |                                           |
|               | -Alarm reset command ("RST")                                                                                                                                              |                                           |
| Frequency     | Either of the following two setting methods can be selected:                                                                                                              |                                           |
| setting       | -Set up as "±20000/maximum output frequency."                                                                                                                             |                                           |
|               | -Frequency (adjustable unit: 0.01 Hz) without polarity                                                                                                                    |                                           |
| PID command   | -Set up as "±20000/100%."                                                                                                                                                 |                                           |
| Operation     | The items below can be monitored:                                                                                                                                         | M codes                                   |
| monitor       | -Frequency command                                                                                                                                                        |                                           |
|               | -Actual values (frequency, current, voltage, etc.)                                                                                                                        |                                           |
|               | -Operation status, information on general-purpose output terminals, etc.                                                                                                  |                                           |
| Maintenance   | The items below can be monitored:                                                                                                                                         | W codes                                   |
| monitor       | -Cumulative operation time, DC link voltage                                                                                                                               | X codes                                   |
|               | <ul> <li>Information to determine the service life of parts to be periodically<br/>replaced (main circuit capacitor, PC board capacitor, cooling fan)</li> </ul>          | Z codes                                   |
|               | -Model codes, capacity codes, ROM version, etc.                                                                                                                           |                                           |
| Alarm monitor | The items below can be monitored:                                                                                                                                         | (dedicated                                |
|               | -Monitoring alarm history (last four alarms)                                                                                                                              | to<br>communica-                          |
|               | -Monitoring information when an alarm occurs (last four alarms)                                                                                                           | tions)                                    |
|               | Operation information (output/set frequencies, current, voltage, etc.)                                                                                                    |                                           |
|               | Operation status, information on general-purpose output terminals<br>Maintenance information (cumulative operation time, DC link<br>voltage, heat sink temperature, etc.) |                                           |
| Function code | All types of function code data can be monitored and changed.                                                                                                             | All function<br>codes other<br>than above |

# CHAPTER 2 COMMON SPECIFICATIONS

This chapter describes the specifications common to the Modbus RTU protocol, Fuji general-purpose inverter protocol, and loader protocol. For further information about the specific specifications of each protocol, see Chapter 3 "Modbus RTU Protocol" and Chapter 4 "Fuji General-purpose Inverter Protocol."

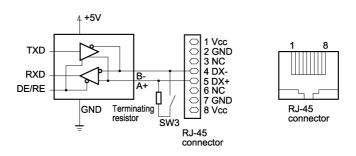
#### Table of Contents

| 2.1   | Specifications of RS485 Communications                                       | 2-1  |
|-------|------------------------------------------------------------------------------|------|
| 2.1.1 | Specification of the RJ-45 connector for RS485 communications (modular jack) | 2-2  |
| 2.1.2 | 2 Specification of connection cable                                          | 2-2  |
| 2.1.3 | Specification of the terminal for RS485 communications                       | 2-3  |
| 2.1.4 | Specification of connection cable for RS485 terminal                         | 2-3  |
| 2.2   | Connections                                                                  | 2-4  |
| 2.2.1 | Basic connection                                                             | 2-4  |
| 2.2.2 | 2 Connection procedures                                                      | 2-7  |
| 2.2.3 | B Devices for connection                                                     | 2-11 |
| 2.2.4 | Measures against noise                                                       | 2-12 |
| 2.3   | Switching to Communications                                                  | 2-14 |
| 2.3.1 | Functions for the switching                                                  | 2-14 |
| 2.3.2 | 2 Link functions (operation selection)                                       | 2-15 |
| 2.3.3 | B How to switch communications enabled/disabled                              | 2-16 |
| 2.3.4 | Link functions for supporting data input (operation select)                  | 2-17 |
| 2.4   | Making RS485-related Settings                                                | 2-18 |
| 2.4.1 | Link function (RS485 setting)                                                | 2-18 |

# 2.1 Specifications of RS485 Communications

Table 2.1 shows the specifications of RS485 communications.

| Table 2.1 | RS485 communications specifications |
|-----------|-------------------------------------|
|           | •                                   |


| Item                                                | Specification                                                                         |                                                                |                                                                                         |
|-----------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Protocol                                            | FGI-BUS                                                                               | Modbus RTU                                                     | Loader commands                                                                         |
| Complying with                                      | Fuji general-purpose<br>inverter protocol                                             | Modicon Modbus<br>RTU-compliant (only in<br>RTU mode only)     | Special commands<br>dedicated to inverter<br>support loader software<br>(not disclosed) |
| No. of supporting stations                          | Host device: 1<br>Inverters: up to 31                                                 |                                                                |                                                                                         |
| Physical level                                      | EIA /RS485                                                                            |                                                                |                                                                                         |
| Connection to<br>RS485                              | Connect using an 8-wire R. terminal block                                             | I-45 connector or                                              | 8-wire RJ-45 connector                                                                  |
| Synchronization<br>method of character              | Start-Stop system                                                                     |                                                                |                                                                                         |
| Transmission mode                                   | Half-duplex                                                                           |                                                                |                                                                                         |
| Transmission speed (bps)                            | 2400, 4800, 9600, 19200 a                                                             | nd 38400 (maximum 1920)                                        | D for FRENIC-Mini)                                                                      |
| Maximum<br>transmission cable<br>length             | 500m                                                                                  |                                                                |                                                                                         |
| No. of available station addresses                  | 1 to 31                                                                               | 1 to 247                                                       | 1 to 255                                                                                |
| Message frame<br>format                             | FGI-BUS                                                                               | Modbus RTU                                                     | Loader command                                                                          |
| Synchronization<br>method of<br>transmission frames | Detection SOH (Start Of Header) character                                             | Detection of no-data<br>transmission time for 3<br>byte period | Start code 96H<br>detection                                                             |
| Frame length                                        | Normal transmission:<br>16 bytes (fixed)<br>High-speed transmission:<br>8 or 12 bytes | Variable length                                                | Variable length                                                                         |
| Maximum transfer<br>data                            | Write: 1 word<br>Read: 1 word                                                         | Write: 50 words<br>Read: 50 words                              | Write: 41 words<br>Read: 41 words                                                       |
| Messaging system                                    | Polling/Selecting/Broadcast                                                           |                                                                | Command message                                                                         |
| Transmission<br>character format                    | ASCII                                                                                 | Binary                                                         | Binary                                                                                  |
| Character length                                    | 8 or 7 bits (selectable by the function code)                                         | 8 bits (fixed)                                                 | 8 bits (fixed)                                                                          |
| Parity                                              | Even, Odd, or None (selectable by the function code)                                  |                                                                | Even                                                                                    |
| Stop bit length                                     | 1 or 2 bits (selectable by the function code)                                         | No parity: 2 bits<br>Even or Odd parity:<br>1 bit              | 1 bit (fixed)                                                                           |
| Error checking                                      | Sum-check                                                                             | CRC-16                                                         | Sum-check                                                                               |

# 2.1.1 Specification of the RJ-45 connector for RS485 communications (modular jack)

The RS485 communications port of the FRENIC-Mini's RS485 communications card (option) and the RS485 communications port for connecting the keypad equipped on the FRENIC-Eco are the RJ-45 connectors with the pin assignment shown below.

| Pin No. | Signal name | Function                      | Remarks                                                           |
|---------|-------------|-------------------------------|-------------------------------------------------------------------|
| 1, 8    | Vcc         | Power source for the keypad   | 5V                                                                |
| 2, 7    | GND         | Reference voltage level       | Ground (0V)                                                       |
| 3, 6    | NC          | No connection                 | -                                                                 |
| 4       | DX-         | RS485 communications data (-) | A terminating resistor of $112\Omega$                             |
| 5       | DX+         | RS485 communications data (+) | is incorporated. Connection/<br>cut off is selected by a switch*. |

\* For the details of the switch, refer to 2.2.2 [2] "About terminating resistors".



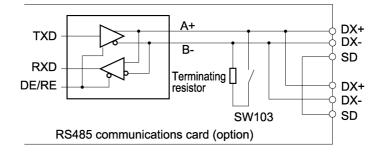


A power supply for the keypad is connected to the RJ-45 connector for RS485 communications (via pins 1, 2, 7, and 8). Note that the pins assigned to the power supply must not be connected when connecting the inverter with another device.

# 2.1.2 Specification of connection cable

The specification of the connection cable is as follows to ensure the reliability of connection.

|                                               | Specification                                                                                                                |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Common specification                          | Straight cable for 10BASE-T/100BASE-TX, satisfying the US<br>ANSI/TIA/EIA-568A category 5 standard (commercial LAN<br>cable) |
| Extension cable for remote operations (CB-5S) | Same as above, 8-core, 5m long, RJ-45 connector (both ends)                                                                  |
| Extension cable for remote operations (CB-3S) | Same as above, 8-core, 3m long, RJ-45 connector (both ends)                                                                  |
| Extension cable for remote operations (CB-1S) | Same as above, 8-core, 1m long, RJ-45 connector (both ends)                                                                  |


To connect a keypad, use an 8-core straight cable. Use an extension cable for remote operations (CB-5S, CB-3S, or CB-1S) or a commercial LAN\* cable (20m max.).

# 2.1.3 Specification of the terminal for RS485 communications

FRENIC-Eco's RS485 communications card is equipped with a pair of terminals for multidrop. The terminal symbols, terminal names, and functions of the respective terminals are as shown in the table below.

| Terminal s     | symbol | Terminal name                             | Function description                                                                                      |
|----------------|--------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 1              | DX+    | RS485 communications data<br>(+) terminal | This is the (+) terminal of RS485 communication data.                                                     |
|                | DX–    | RS485 communications data<br>(-) terminal | This is the (–) terminal of RS485 communication data.                                                     |
|                | SD     | Communications cable shield terminal      | This is the terminal for relaying the shield of the shielded cable, insulated from other circuits.        |
| 2              | DX+    | DX+ relay terminal for<br>multidrop       | This is the relay terminal of RS485 communications data (+).                                              |
|                | DX–    | DX- relay terminal for<br>multidrop       | This is the relay terminal of RS485 communications data (-).                                              |
|                | SD     | SD relay terminal for<br>multidrop        | This is the terminal for relaying the shield of the shielded cable, insulated from other circuits.        |
| Internal switc | h      | Terminating resistor switching            | A terminating resistor of $112\Omega$ is incorporated.<br>Connection/release is switched by this switch*. |

\* For the details of the switch, see section 2.2.1 "Basic connection diagrams."



# 2.1.4 Specification of connection cable for RS485 terminal

To ensure the reliability of connection, use twisted pair shield cables for long distance transmission AWG 16 to 26.

# 2.2 Connections

# 2.2.1 Basic connection

When connecting the keypad with the inverter or connecting the inverter with a host such as personal computer or PLC, use a standard LAN cable (straight for 10BASE-T). A converter is necessary to connect a host not equipped with RS485 interface.

(1) Connection with the keypad

FRENIC-Mini:

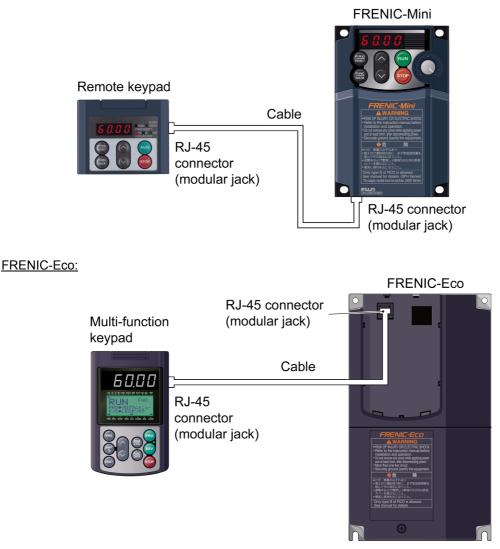



Figure 2.1 Connection with the keypad

Cable: extension cable for remote operations (CB-5S, CB-3S, or CB-1S) or commercial LAN cable



- For the keypad, be sure to turn off the terminating resistor.
- Keep wiring length 20m or less.
- For FRENIC-Mini, only the remote keypad is available. In addition, the RS485 communications card (option) is necessary for connection.

- <complex-block>
- (2) Connection with a personal computer (when connecting with the USB port via a recommended converter)

Figure 2.2 Connection with a personal computer

- Converter: USB-485I, RJ45-T4P (System Sacom Sales Corp., Japan)
- Cable 1: USB cable supplied with the converter
- Cable 2: extension cable for remote operations (CB-5S, CB-3S, or CB-1S) or commercial LAN cable
- CAUTION

For FRENIC-Mini, the RS485 communications card (option) is necessary for connection.

(3) Example of typical connection other than above (Multidrop connection using the RJ-45 connector)

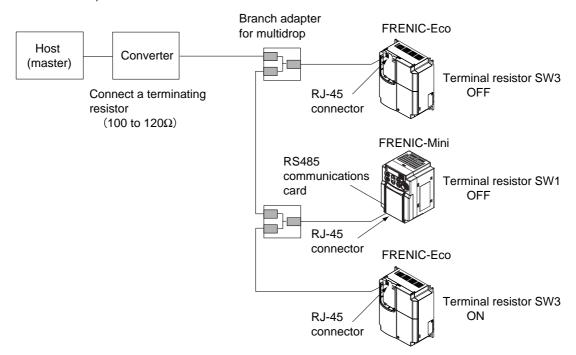



Figure 2.3 Multidrop connection diagram (connection via the RJ-45 connector)

| Converter:                    | Not necessary if the host is equipped with RS485 interface.                                |
|-------------------------------|--------------------------------------------------------------------------------------------|
| Branch adapter for multidrop: | Useful when implementing 1:n multidrop configuration using a cable with a RJ-45 connector. |
| Cable:                        | Use a connection cable meeting the specification. (Refer to 2.1.4.)                        |



 A power supply for the keypad is connected to the RJ-45 connector of the inverter (via pins 1, 2, 7, and 8). When connecting the inverter with another device, do not use the pins assigned to the power supply but use the signal pins (pins 4 and 5).

- When selecting additional devices to prevent the damage or malfunction of the control PCB caused by external noises or eliminate the influence of common mode noises, be sure to see section 2.2.3 "Devices for connection."
- Keep the total wiring length 500m max.
- For FRENIC-Mini, the RS485 communications card (option) is necessary for connection.

(4) Multidrop connection using terminal block

When using the RS485 communication card (option) to connect FRENIC-Eco with a host by multidrop connection, connect them as shown in the figure below. Turn on the SW103 switch for inserting a terminating resistance, equipped on the RS485 communications card (option) mounted on the inverter used as the terminator.

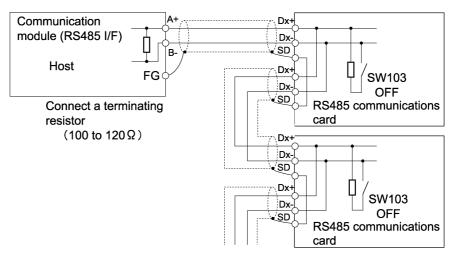
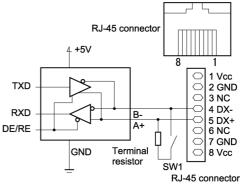
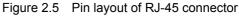



Figure 2.4 Multidrop connection diagram (terminal block connection)

- For the details of SW103, see "RS485 Communications Card Installation Manual (INR-SI47-0872)."
  - CAUTION When selecting additional devices to prevent the damage or malfunction of the control PCB caused by external noises or eliminate the influence of common mode noises, be sure to see section 2.2.3 "Devices for connection."
    - Keep the total wiring length 500m max.


## 2.2.2 Connection procedures


This section describes the knowledge necessary for connecting with a host.

[1] RJ-45 connector (modular jack) pin layout

To facilitate connection with a typical RS232C to RS485 converter, the FRENIC-Mini/Eco assigned pin No. 4 to DX- signals and pin No. 5 to DX+ signals.

CAUTION - Pins 1, 2, 7, and 8 are assigned to the power supply for the keypad. Do not use these pins when connecting the inverter with another device via the RJ-45 connector but use signal pins (pins 4 and 5) only.





 To connect the FVR-E11S series inverter on the communications network on which the FRENIC-Mini/Eco exists, pin Nos. 3 and 5 must be switched using a connection cable, etc. Table 2.2 makes a comparison of pin layout between the FRENIC-Mini/Eco and the FVR-E11S series. Chap. 2

| Pin No. | FRENIC-Mini/Eco | FVR-E11S                    | Remarks                                                   |
|---------|-----------------|-----------------------------|-----------------------------------------------------------|
| 1       | VCC (+5V)       | SEL_TP<br>(keypad selected) | The power supply is<br>short-circuited when<br>connected. |
| 2       | GND             | GND                         |                                                           |
| 3       | NC              | DX+                         |                                                           |
| 4       | DX-             | DX-                         |                                                           |
| 5       | DX+             | SEL_ANY<br>(optional)       |                                                           |
| 6       | NC              | GND                         |                                                           |
| 7       | GND             | VCC                         | The power supply is<br>short-circuited when<br>connected. |
| 8       | VCC (+5V)       | VCC                         | The power supply is<br>short-circuited when<br>connected. |

 Table 2.2
 Comparison of pin layout between the FRENIC-Mini/Eco and the FVR-E11S

#### [2] About terminating resistors

Insert a terminating resistor (100 to  $120\Omega$ ) into both the ends of the connection cable. This allows controlling signal reflection and reducing noises.

Be sure to insert a terminating resistor into the terminating host side and the side of the device connected to the final stage, in short, both the terminating devices configuring the network. Terminating resistors are inserted into total two positions. Note that the current capacity of signals may be insufficient if terminating resistors are inserted into three or more devices.

If the inverter is used as a terminating device, turn on the switch for terminal resistor insertion.

| Model       | Objective PCB             | Switch No. | Layout             |
|-------------|---------------------------|------------|--------------------|
| FRENIC-Mini | RS485 communications card | SW1        | See Figure 2.6(a). |
| FRENIC-Eco  | Control PCB of inverter   | SW3        | See Figure 2.6(b). |
|             | RS485 communications card | SW103      | See Figure 2.6(c). |

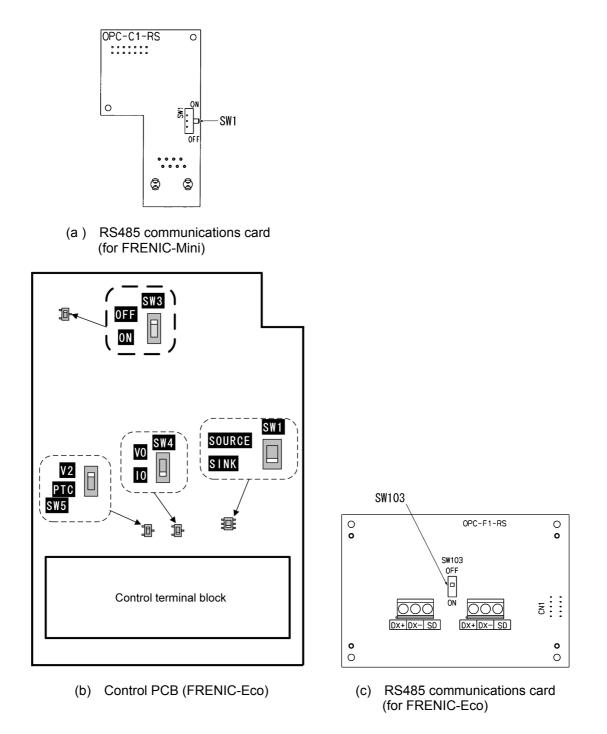



Figure 2.6 Layout of the switches for inserting a terminating resistance

#### [3] Connection with a four-wire host

Although FRENIC-Mini/Eco uses two-wire cables, some hosts adopt only four-wire cables. Connect to such a host by connecting the driver output with the receiver input with a crossover cable on the host side to change the wiring method to two-wire.

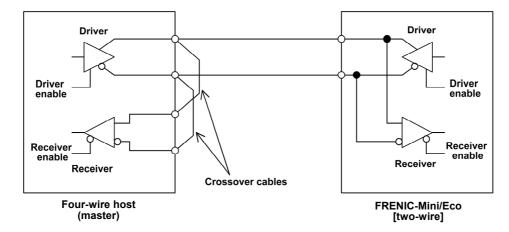



Figure 2.7 Connection with a four-wire host

- **CAUTION** The driver circuit on the host side must have a function to set the driver output to high impedance (driver enable: OFF). Though products conforming to RS485 normally has this function, check the specifications of the host.
  - Keep the output of the driver circuit on the host side in the status of high impedance except when the host is transmitting data (driver enable: OFF).
  - Keep the receiver circuit of the host device deactivated (receiver enable: OFF) while the host is transmitting data to prevent the host from receiving the data it transmitted. If the receiver cannot be deactivated, program the host so that the data transmitted by the host is discarded.

# 2.2.3 Devices for connection

This section describes the devices necessary for connecting a host not equipped with RS485 interface, such as a personal computer, or for multidrop connection.

#### [1] Converter

In general, personal computers are not equipped with an RS485 port. An RS232C to RS485 converter or USB to RS485 converter is therefore required. Use a converter meeting the following recommended specifications for proper operation. Note that proper performance may not be expected from a converter other than the recommended one.

#### Specifications of the recommended converter

Transmission/receiving switching system: Automatic switching by monitoring transmission data on the personal computer side (RS232C)

Isolation:The RS232C side of the converter must be isolated from the RS485 side.Failsafe:Equipped with a failsafe function (\*)

Other requirements: The converter must have enough noise immunity for successful communications.

\* The failsafe function means a function that keeps the RS485 receiver's output at high logic level even when the RS485 receiver's input is open or short-circuited or when all the RS485 drivers are inactive.

#### Recommended converter

System Sacom Sales Corporation (Japan) : KS-485PTI (RS232C to RS485 converter)

: USB-485I RJ45-T4P (USB to RS485 converter)

#### Transmission/receiving switching system

Since RS485 communications adopts the half-duplex system (two-wire system), the converter must have a transmission/receiving switching function. The following two systems are available as the switching system.

- (1) Automatic turnaround of the transceiver buffer
- (2) RTS- or DTR- controlled turnaround of the transceiver buffer

When a personal computer for inverter loader has Microsoft Windows 98 or older operating system, the switch system of (2) above is not supported.

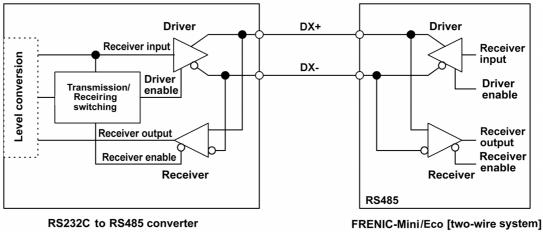



Figure 2.8 Communications level conversion

#### [2] Branch adapter for multidrop

When a slave unit has only 1 port of RJ-45 connector (moduler jack), a branch adaptor is necessary for multidrop connection using standard LAN cables.

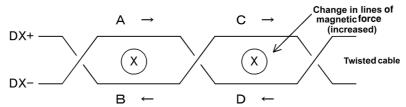
#### Recommended branch adapter

SK Kohki (Japan): MS8-BA-JJJ

# 2.2.4 Measures against noise

Depending on the operating environment, normal communications cannot be performed or instruments and converters on the host side may malfunction due to the noise generated by the inverter. This section describes measures to be taken against such problems. Consult Appendix A "Advantageous Use of Inverters (Notes on electrical noise)" in "FRENIC-Mini User's Manual (MEH446)" or "FRENIC-Eco User's Manual (MEH456)."

#### [1] Measures for devices subjected to noise


#### Using an isolated converter

An isolated converter suppresses common mode noise that exceeds the specified operating voltage range of the receiver in case of long-distance wiring. However, since the isolated converter itself may malfunction, use a converter insusceptible to noise.

#### Using a category 5 compliant LAN cable

Category 5 compliant LAN cables are generally used for RS485 communications wiring. To obtain an improved preventive effect on electromagnetically induced noise, use Category 5 conformed LAN cables with four twisted-pair-cores and apply one twisted pair, DX+ and DX-. To ensure a high preventive effect on electrostatically induced noise, use Category 5 conformed LAN cables with four shielded-and-twisted-pair-cores, and ground the shield at the master-side end.

Effect of twisted pair cables



A uniform magnetic flux directing from the face to back of the paper exists, and if it increases, electromotive force in the direction of  $\rightarrow$  is generated. The electromotive forces of A to D are the same in intensity, and their directions are as shown in the above figure. In the cable DX+, the direction of electromotive forces B is reverse to that of electromotive force C, then the electromotive forces B and C offset each other, and so do electromotive forces A and D in the cable DX-. So, normal mode noise caused by electromagnetic induction does not occur. However, noise cannot be completely suppressed under such conditions as an uneven twist pitch. Thus, noise is eliminated in twisted cables but normal mode noise occurs in parallel cable.

#### Shield effect

- When the shield is not grounded, the shield functions as an antenna and receives noise.
- 2) When the shield is grounded at both ends, if the grounding points are separated from each other, the ground potential may be different between them, and the shield and the ground form a loop circuit in which a current flows and may cause noise. Additionally, the magnetic flux within the loop may vary and generate noise.
- When the shield is grounded at either end, the effect of electrostatic induction can be completely eliminated within the shielded section.

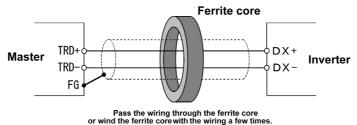
#### **Connecting terminating resistors**

Insert a resistor equivalent to the characteristic impedance of the cables (100 to  $120\Omega$ ) into both end terminals of the wiring (network) to prevent ringing due to the reflection of signals.

#### Separating the wiring

Separate the power lines (input L1/R, L2/S, and L3/T and output U, V, and W) from the RS485 communications line, because induced noise can be prevented.

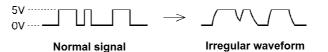
#### Separating the grounding


Do not ground instruments and the inverter together. Noise may conduct through the grounding wire. Use as a thick wire as possible for grounding.

#### Isolating the power supply

Noise may carry through the power supply line to instruments. It is recommended that the distribution system be separated or a power isolation transformer (TRAFY) or noise suppression transformer be used to isolate the power supply for such instruments from the power supply for the inverter.

#### Adding inductance


Insert a chalk coil in series in the signal circuit, or pass the signal wiring through a ferrite core, as shown in the figure below. This provides the wiring higher impedance against high-frequency noise, and suppresses the propagation of high-frequency noise.



or wind the ferrite core with the wiring a f



If an inductance is added, the signal waveform may become irregular and a transmission error may result during communications at a high baud rate. In this case, reduce the baud rate by changing the setting of function code y04.



#### [2] Measures against noise sources

#### Reducing carrier frequency

By lowering data of function code F26 "motor sound (carrier frequency)," the noise level can be reduced. However, reducing the carrier frequency increases the motor sound.

#### Installing and wiring an inverter

Passing the power lines through metal conduit or adopting metal control panels can suppress radiation or induction noise.

#### Isolating the power supply

Using a power isolation transformer on the line side of the inverter can cut off the propagation (transmission) of noise.

#### [3] Additional measures to reduce the noise level

Consider using a zero-phase reactor or EMC compliance filter. The measures described in [1] and [2] above can generally prevent noise. However, if the noise does not decrease to the permissible level, consider additional measures to reduce the noise level. For further information, see "6.4.1 Peripheral Equipment Options" under Chapter 6 of the FRENIC-Mini User's Manual (MEH446) or FRENIC-Eco User's Manual (MEH456).

# 2.3 Switching to Communications

# 2.3.1 Functions for the switching

Figure 2.9 below shows a block diagram via communications for frequency setting and operation commands.

This block diagram indicates only the base of the switching section, and some settings may be given higher priority than the blocks shown in this diagram or details may be different due to functional expansion and so on. For details, see chapter 4 "Control Block Diagram" in the "FRENIC-Mini User's Manual (MEH446)" or "FRENIC-Eco User's Manual (MEH456)."

CAUTION Operation commands herein include digital input signals via communications.

According to the setting of function code H30 link function (operation selection), the command system when communications is valid is selected.

Even if digital input is set to link enable (LE), when the link becomes invalid ("LE" = OFF), the command system switches from communications to other settings including digital input signal. In short, the frequency setting, forward operation command, and X1 signal in Figure 2.9 switch from communications dedicated function codes S01, S05, and S06 to terminals [12], [FWD], and [X1], respectively.

Function code data can be read and written through communications regardless of the setting function code H30 (link function (operation selection)).

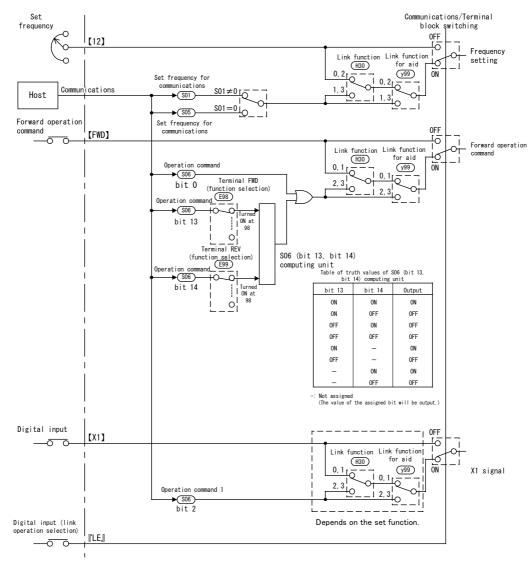



Figure 2.9 Operation command block diagram via communications

# 2.3.2 Link functions (operation selection)

According to the setting of function code H30: Serial link (function select), the frequency setting and the operation command source (via-communications command or command selected by function codes F01/C30 and F02 when communications is valid can be selected.

| Data of link<br>function | When communications are valid         |                                       | Su               | pport     |
|--------------------------|---------------------------------------|---------------------------------------|------------------|-----------|
| H30                      | Frequency setting                     | Operation command                     | Mini             | Eco       |
| 0                        | F01/C30, F02                          | F01/C30, F02                          | Supported        | Supported |
| 1                        | Through RS485<br>communications       | F01/C30, F02                          |                  |           |
| 2                        | F01/C30, F02                          | Through RS485<br>communications       |                  |           |
| 3                        | Through RS485<br>communications       | Through RS485<br>communications       |                  |           |
| 4                        | Through RS485 (option) communications | F01/C30, F02                          | Not<br>supported |           |
| 5                        | Through RS485 (option) communications | Through RS485<br>communications       |                  |           |
| 6                        | F01/C30, F02                          | Through RS485 (option) communications |                  |           |
| 7                        | Through RS485<br>communications       | Through RS485 (option) communications |                  |           |
| 8                        | Through RS485 (option) communications | Through RS485 (option) communications |                  |           |

| Table 2.3 | Link function H30 | (operation selection) |
|-----------|-------------------|-----------------------|
|           |                   |                       |

FRENIC-Mini supports data 0 to 3 only. FRENIC-Mini's RS485 communications card supports data 1 to 3 through RS485 communications.

**(HINT** By selecting continuous communications valid without setting any digital input terminal, and switching the data of H30 to communications valid/invalid (external signal input valid), communications valid/invalid can be switched in the same manner as switching at the digital input terminal. See the next section or later.

## 2.3.3 How to switch communications enabled/disabled

To issue a frequency setting or operation command through communications to control the inverter, select "Through RS485 communications" by function code H30: link function (operation selection).

In addition, when switching control through communications with control from the terminal block (frequency setting from terminal [12], operation command from terminal [FWD] and so on) to switch remote operations with operations on the inverter body, assign "link operation selection" (data = 24: "LE") to the function code related to the digital input terminal (one of E01-E05: terminals [X1] to [X5], E98: terminal [FWD], or E99: terminal [REV]). (FRENIC-Mini does not support E04, E05, [X4], and [X5].) Control can be switched by the terminal to which "link operation selection" (data = 24: "LE") is assigned.

Communications automatically becomes valid when link operation selection is not assigned to any digital input terminal.

| Input terminal                               | Status                 |
|----------------------------------------------|------------------------|
| OFF                                          | Communications invalid |
| ON (short-circuited to<br>the terminal [CM]) | Communications valid   |

 Table 2.4
 Digital input terminal settings and communications statuses



- Via-communications command data and operation data must be rewritten from the host (controller) because the memory is initialized when the power is turned ON.
- Although command data and operation data can be written even if communications is invalid, they will not be validated because the switch is made invalid by link operation selection. If communications is made valid with no operation data written (operation command OFF, frequency setting = 0Hz) during operation, the running motor decelerates to a stop and may exert impact on the load depending on the set deceleration time. Operation can be switched without causing impact to the load by setting data in communications invalid mode in advance and then switching the mode to valid.
- If negative logic is set as Link enable (data 1024), the logical value corresponding to the ON/OFF status of the command "LE" will be reversed.
- FRENIC-Eco has the field bus option other than RS485 communications. The field bus option is handled prior to RS485 communications depending on the setting of it in some cases. For details, refer to "FRENIC-Eco User's Manual (MEH456)."

# 2.3.4 Link functions for supporting data input (operation select)

According to the setting of function code y99: link function for supporting data input (operation select), the frequency setting and the operation command source (via-communications command or command specified by function code H30 and y98) when communications is valid can be selected individually.

- CAUTION This function code is designed for inverter support software for personal computer loaders such as FRENIC Loader, and forcibly makes communications valid without changing the setting of H30. Do not change the current setting unless otherwise required.
  - FRENIC-Mini operates in the same way as y99 is set to 0 even if y99 is set 1, 2, or 3 when this function code is changed from the keypad. When setting a value other than 0, the value of y99 must be written through communications.
  - The data of this function code cannot be saved in the inverter and will return to 0 when the power supply is turned off.

| Link function | When communications is valid               |                                            |  |
|---------------|--------------------------------------------|--------------------------------------------|--|
| y99           | Frequency setting                          | Operation command                          |  |
| 0             | Frequency setting specified by H30 and y98 | Operation command specified by H30 and y98 |  |
| 1             | Communications valid (S01, S05)            |                                            |  |
| 2             | Frequency setting specified by H30 and y98 | Communications valid (S06)                 |  |
| 3             | Communications valid (S01, S05)            |                                            |  |

| Table 2.5 | Link functions for supporting data input |
|-----------|------------------------------------------|
|           | Entre land of our porting data input     |

# 2.4 Making RS485-related Settings

# 2.4.1 Link function (RS485 setting)

Use function codes (y01 to y10 and y11 to y20) to make settings for RS485 communications functions. However, y11 to y20 are FRENIC-Eco's function code for the RS485 communications card.

#### Station address (y01, y11)

Set a station address for RS485 communications. The setting range depends on the protocol.

Table 2.6 RS485 setting (station addresses)

| Protocol                               | Range    | Broadcast |
|----------------------------------------|----------|-----------|
| Modbus RTU protocol                    | 1 to 247 | 0         |
| Protocol for loader commands           | 1 to 255 | _         |
| Fuji general-purpose inverter protocol | 1 to 31  | 99        |

CAUTION

- No response is expected if an address number out of the specified range is set.

- Match the station address with that of the personal computer when a personal computer loader is connected.

#### Operation made selection when an error occurs (y02, y12)

Set the operation performed when an RS485 communications error occurs.

RS485 communications errors are logical errors such as an address error, parity error, or framing error, transmission error, and communication disconnection error set by y08 and y18. In any case, error is detected only while the inverter is running in the link operation made for both the operation command and frequency setting. If neither the operation command nor frequency setting is sent through RS485 communications or the inverter is not running, error is ignored.

| y02, y12 data | Function                                                                                                                                                                                                                                                                                        |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0             | Indicates an RS485 communications error ( $E - B$ for y02 and $E - P$ for y12), and stops operation immediately (alarm stop).                                                                                                                                                                   |
| 1             | Runs during the time set on the error processing timer (y03, y13), and then displays an RS485 communications error ( $E - B$ for y02 and $E - P$ for y12) and stops operation (alarm stop).                                                                                                     |
| 2             | Runs during the time set on the error processing timer (y03, y13). If communications are recovered, continues operation. Otherwise, displays an RS485 communications error ( $\mathcal{E}_{r}-\mathcal{B}$ for y02 and $\mathcal{E}_{r}-\mathcal{P}$ for y12) and stops operation (alarm stop). |
| 3             | Continues operation even after a communication error has occurred.                                                                                                                                                                                                                              |

Table 2.7RS485 setting (operations when an error has occurred)

#### Timer for y02 and y12 (y03, y13)

Set a timer for error detection.

It is judged as an error that the response to a request is not received within time set because of no response of the other end and so on. See the section of "Communication disconnection detection time (y08, y18)."

- Data input range: 0.0 to 60.0 (s)

#### Baud rate (y04, y14)

Set a baud rate.

computer.

- Setting when a personal computer loader is connected
   Match the baud rate with that of the personal
- Table 2.8 Baud rateDataBaud rate02400 bps14800 bps29600 bps319200 bps438400 bps<br/>(FRENIC-Mini does<br/>not support it.)

| Table | e 2.9 Data length |
|-------|-------------------|
| Data  | Function          |
| 0     | 8 bits            |
| 1     | 7 bits            |

Set a character length.

- Setting when FRENIC Loader is connected

This code does not need to be set because it is L automatically set to eight bits (as in the Modbus RTU protocol).

#### Parity check (y06, y16)

Set a parity bit.

- Setting when FRENIC Loader is connected This code does not need to be set because it is automatically set to even parity.

| Table 2 | 2.10     | Parity | check  |
|---------|----------|--------|--------|
| Table A | <u> </u> | i any  | CITCON |

| Data | Function      |
|------|---------------|
| 0    | No parity bit |
| 1    | Even parity   |
| 2    | Odd parity    |

#### Stop bits (y07, y17)

Set a stop bit.

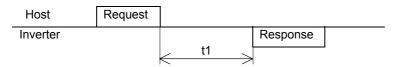
- Setting when FRENIC Loader is connected This code does not need to be set because it is automatically set to 1.
- In the Modbus RTU protocol, this code does not need to be set because it is automatically determined in conjunction with the parity bit.

#### Table 2.11 Stop bits

| Data | Function |
|------|----------|
| 0    | 2 bits   |
| 1    | 1 bit    |

#### No response error detection time (y08, y18)

In a system designed to be sure to access a station (inverter) managed by a host within a specific period of time, access may be lost during RS485 communications due to wire disconnections. In such a case, the inverter starts the operation of communications error set up by y02 and y12 if the inverter detects the symptom and access is still lost even after the communications disconnection detection time has passed.


| Table 2.12     | No response error |  |
|----------------|-------------------|--|
| detection time |                   |  |

| Data    | Function                             |
|---------|--------------------------------------|
| 0       | No response error detection disabled |
| 1 to 60 | Detecting time from 1 to 60 seconds  |

#### Response interval (y09, y19)

Set the time from the completion of receipt of a request from the host, to the return of response to it. Even in a slow processing device, timing can be adjusted by changing the response interval time.

- Data setting range: 0.00 to 1.00 (second)



- t1 = Response interval time +  $\alpha$
- α: The processing time within the inverter. It depends on the timing and command given.
   For further information, see the procedure for each protocol on the host below:
   Modbus RTU protocol → Chapter 3 "3.2 Host Side Procedures"
   Fuji general-purpose inverter protocol → Chapter "4.2 Host Side Procedures"
- Setting when FRENIC Loader is connected

Set the response interval time according to the performance and conditions of the personal computer and converter (RS232C TO RS485 converter, etc.).

(Some converters monitor the communications status and use a timer to switch transmission/receiving.)

#### Protocol select (y10, Y20)

Select a communications protocol.

 Setting when FRENIC Loader is connected Select the protocol for FRENIC Loader commands (y10 = 1).

| Data | Protocol                                 |  |
|------|------------------------------------------|--|
| 0    | Modbus RTU                               |  |
| 1    | FRENIC Loader<br>(supported by y10 only) |  |
| 2    | Fuji general-purpose inverter            |  |

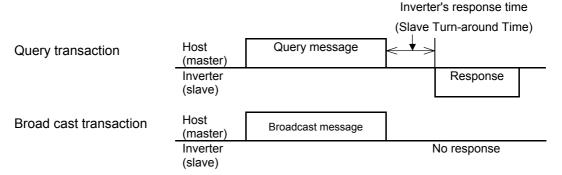
#### Table 2.13 Protocol select

# Modbus RTU PROTOCOL

This chapter describes the Modbus RTU protocol, as well as the host side procedure for using this protocol and error processing.

The Modbus RTU protocol was a set of specifications developed in the United States. For the FRENIC-Mini of which inverter ROM version is 0399 or earlier, the Modbus RTU functions are partially restricted. Contact us about details of restrictions. Check the inverter ROM version with menu "5\_14" described in "3.8 Reading Maintenance Information" under Chapter 3 of the FRENIC-Mini Instruction Manual (INR-SI47-0791-E).

In addition, for FRENIC-Eco, coil support (coil reading out, coil reading in, and serial coil writing) is added to the protocol of Modbus RTU.


#### Table of Contents

| 3.1 M  | essages                                                              | 3-1  |
|--------|----------------------------------------------------------------------|------|
| 3.1.1  | Message formats                                                      | 3-1  |
| 3.1.2  | Message types                                                        | 3-1  |
| 3.1.3  | Message frames                                                       |      |
| 3.1.4  | Message categories                                                   |      |
| 3.1.5  | Communications examples                                              | 3-11 |
| 3.2 Ho | ost Side Procedures                                                  | 3-12 |
| 3.2.1  | Inverter's response time                                             | 3-12 |
| 3.2.2  | Timeout processing                                                   | 3-13 |
| 3.2.3  | Receiving preparation complete time and message timing from the host | 3-14 |
| 3.2.4  | Frame synchronization method                                         | 3-14 |
| 3.3 Co | ommunications Errors                                                 | 3-15 |
| 3.3.1  | Categories of communications errors                                  | 3-15 |
| 3.3.2  | Operations in case of errors                                         | 3-16 |
| 3.4 CI | RC-16                                                                | 3-19 |
| 3.4.1  | Overview of the CRC-16                                               | 3-19 |
| 3.4.2  | Algorithm                                                            | 3-19 |
| 3.4.3  | Calculation example                                                  | 3-21 |
| 3.4.4  | Frame length calculation                                             |      |

## 3.1 Messages

## 3.1.1 Message formats

The regular formats for transmitting RTU messages are shown below:



If the inverter receives from the host a message in the standby status and considers it properly received, it executes a transaction in response to the request and sends back normal response. If the inverter judges that the message has not been received properly, it returns error response. The inverter does not send back any response in the case of broadcast transactions.

## 3.1.2 Message types

Message types are classified into four types; query, normal response, error response, and broadcast.

#### <u>Query</u>

The host sends messages to an inverter.

#### Normal response

After the inverter received a query from the host, the inverter executes a transaction in response to the request, and sends back corresponding normal response.

#### Error response

If the inverter receives a query but cannot execute the requested function because an invalid function code is specified or for other reasons, it sends back error response.

The error response is accompanied by a message describing the reason the request cannot be executed.

The inverter cannot send back any response in case of a CRC or physical transmission error (parity error, framing error, overrun error).

#### **Broadcast**

The master uses address 0 to send messages to all slaves. All slaves, which receive a broadcast message, execute the requested function. This transaction will be terminated upon timeout of the master.

## 3.1.3 Message frames

As shown below, a transmission frame consists of four blocks, which are called fields. Details depend on FC (RTU function codes). To make a clear distinction between RTU function codes and the inverter's function codes, the former will be hereinafter referred to as 'FC'.

| 1 byte          | 1 byte                 | Up to 105 bytes | 2 bytes     |
|-----------------|------------------------|-----------------|-------------|
| Station address | FC (RTU function code) | Information     | Error check |

#### Station address

The station address field is one byte long, in which a station address between 0 and 247 can be selected.

Selecting address 0 means the selection of all slave stations and a broadcast message.

#### 'FC' (RTU function code)

The 'FC' field is one byte long, in which a function code is defined with a number from 0 to 255. The 'FCs' marked with "\*" are available. Do not use any unavailable 'FC'. Failure to observe this rule results in error response.

| 'FC'         | Description                                                            |
|--------------|------------------------------------------------------------------------|
| FC           | Description                                                            |
| 0            | Unused                                                                 |
| 1 *          | Read Coil Status (80 coils maximum) (not supported by FRENIC-Mini)     |
| 2            | Unused                                                                 |
| 3 *          | Read Holding Registers (50 registers maximum)                          |
| 4            | Unused                                                                 |
| 5 *          | Force Single Coil (not supported by FRENIC-Mini)                       |
| 6 *          | Preset Single Register                                                 |
| 7            | Unused                                                                 |
| 8 *          | Diagnostics                                                            |
| 9 to 14      | Unused                                                                 |
| 15 *         | Force Multiple Coils (16 coils maximum) (not supported by FRENIC-Mini) |
| 16 *         | Preset Multiple Registers (50 registers maximum)                       |
| 17 to 127    | Unused                                                                 |
| 128 to 255 * | Reserved for exception response                                        |

| Table 3-1 | List of 'FC' |
|-----------|--------------|
|-----------|--------------|

#### Information

The information field contains all information (function code, byte count, number of data, data, etc.). For further information about the information field for each message type (broadcast, query, normal response, error response), see "3.1.4 Message categories."

#### Error check

The error check field is a CRC-16 check system and two bytes long. Since the length of the information field is variable, the frame length required for calculating the CRC-16 code is calculated based on the 'FC' and the byte count data.

For further information about CRC-16 calculations and algorithm, see "3.4 CRC-16." For byte counts, see "3.1.4 Message categories."

#### Character format

Each byte of a message is transmitted as a character. Character formats are described on the following page.

A character comprises a start bit (logical value 0), 8-bit data, an additional (optional) parity bit, and a stop bit (logical value 1).

A character always consists of eleven bits, and the number of stop bits varies depending on whether parity exists.

#### Without parity

| LSB   |      |   |   |   |   |   |   |   |      |   |    | MSB |
|-------|------|---|---|---|---|---|---|---|------|---|----|-----|
| 0     | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 |      | 9 | 10 |     |
| Start | Data |   |   |   |   |   |   |   | Stop |   |    |     |

#### With parity

| LSB   |      |   |   |   |   |   |   |   |                   | MSB  |
|-------|------|---|---|---|---|---|---|---|-------------------|------|
| 0     | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9                 | 10   |
| Start | Data |   |   |   |   |   |   |   | Parity (optional) | Stop |

## 3.1.4 Message categories

There are eight RTU message categories; read holding registers, preset single register, preset multiple registers, diagnostics, read coil status, force single coil, force multiple coils and error response.

Each category is described below:

## [1] Read holding registers

#### Query

| 1 byte    | 1 byte          | 2 b           | ytes       | 2 bytes       |     | 2 bytes 2 bytes |   |                |  |             |  |  |
|-----------|-----------------|---------------|------------|---------------|-----|-----------------|---|----------------|--|-------------|--|--|
| Station   | 03 <sub>Н</sub> | Function code |            | Function code |     | Number of read  |   | Number of read |  | Error check |  |  |
| address   |                 |               |            | da            | ata |                 |   |                |  |             |  |  |
|           |                 | Hi            | Lo         | Hi            | Lo  |                 | - |                |  |             |  |  |
| Normal re | sponse          |               |            |               |     |                 |   |                |  |             |  |  |
| 1 byte    | 1 byte          | 1             | byte       |               |     | 2 to 100 bytes  |   | 2 bytes        |  |             |  |  |
| Station   | 03 <sub>H</sub> | Byte          | Byte count |               |     | Read data       |   | Error check    |  |             |  |  |
| address   |                 |               |            |               |     |                 |   |                |  |             |  |  |

Hi, Lo (data 0); Hi, Lo (data 1); ·····

#### How to set a query

- This request is not available for broadcast transactions. Station address 0 will become invalid (no response).
- 'FC' = 3 (03<sub>H</sub>)
- The function code is two bytes long. The Hi byte indicates the function code group (see Table 3.2), and the Lo byte represents a function code identification number (0 to 99).

(Example) When the function code is E15, the Hi byte is  $01_H$  and the Lo byte is  $0F_H$ .

| Group | C | Code            | Name                             | Group | C  | ode             | Name                 |
|-------|---|-----------------|----------------------------------|-------|----|-----------------|----------------------|
| F     | 0 | 00 <sub>H</sub> | Fundamental function             | М     | 8  | 08 <sub>H</sub> | Monitor data         |
| E     | 1 | 01 <sub>H</sub> | Extension terminal<br>function   | J     | 13 | 0D <sub>H</sub> | Application function |
| С     | 2 | 02 <sub>H</sub> | Control function of<br>frequency | _     |    |                 |                      |
| Р     | 3 | 03 <sub>H</sub> | Motor parameter                  | У     | 14 | 0E <sub>H</sub> | Link function        |
|       |   |                 |                                  | W     | 15 | 0F <sub>H</sub> | Monitor 2            |
| Н     | 4 | 04 <sub>H</sub> | High performance function        | Х     | 16 | 10 <sub>H</sub> | Alarm 1              |
| S     | 7 | 07 <sub>H</sub> | Command/<br>Function data        | Z     | 17 | 11 <sub>H</sub> | Alarm 2              |
| 0     | 6 | 06 н            | Operational<br>function          |       |    |                 |                      |

 Table 3.2
 Function code group/code conversion table

- The length of the read data is up to 50 words (2 byte each).

- If the read data contains an unused function code, 0 will be read, which will not result in an error.
- Data does not extend over two or more function code groups. If, for example, reading of 40 words is specified from F40 but only function codes up to F40 are available, the data of F40 will be set at the first word, and the other 49 words will be 0.

#### Interpretation of normal response

- The data range of byte counts is between 2 and 100. A byte count is double the number of read data (1 50 data) of the response.
- The read data contains each word data in order of Hi byte and Lo byte, and each word data is sent back in order of the data of the function code (address) requested by the query, the data of that address number plus 1, the data of that number address number plus 2 ... If two or more function data are read and the second or any of the following data contains an unused function code (F09, etc.), the read data will become 0.

### [2] Preset single register

#### Query

| 1 byte  | 1 byte          | 2 b  | ytes  | 2  | bytes    | 2 bytes     |
|---------|-----------------|------|-------|----|----------|-------------|
| Station | 06 <sub>H</sub> | Fun  | ction | Wr | ite data | Error check |
| address |                 | code |       |    |          |             |
|         |                 | Hi   | Lo    | Hi | Lo       |             |

#### Normal response

| 1 byte          | 1 byte | 2 bytes       | 2 bytes    | 2 bytes     |
|-----------------|--------|---------------|------------|-------------|
| Station address | 06н    | Function code | Write data | Error check |

#### How to set a query

- When address 0 is selected, broadcast is available. In this case, all inverters do not respond even if a broadcast request is executed.
- 'FC' = 6 (06<sub>H</sub>)
- The function code is two bytes long. The Hi byte indicates the function code group (see Table 3.2), and the Lo byte represents a function code identification number (0 to 99).
- The written data field is fixed two bytes long. Set the data on the function code to be written.

#### Interpretation of normal response

The frame is the same as the query.

#### [3] Preset multiple registers

#### Query

| 1 byte          | 1 byte          | 2 b | ytes        | 2 b | ytes              | 1 byte     | 2 to 100 bytes | 2 bytes     |
|-----------------|-----------------|-----|-------------|-----|-------------------|------------|----------------|-------------|
| Station address | 10 <sub>н</sub> |     | ction<br>de |     | r of write<br>ata | Byte count | Write data     | Error check |
|                 |                 | Hi  | Lo          | Hi  | Lo                |            | Hi, Lo; Hi, Lo |             |

#### Normal response

| 1 byte  | 1 byte          | 2 bytes  | 2 bytes         | 2 bytes     |
|---------|-----------------|----------|-----------------|-------------|
| Station | 10 <sub>H</sub> | Function | Number of write | Error check |
| address |                 | code     | data            |             |

#### How to set a query

- When the station address 0 is selected, broadcast is available. In this case, all inverters do not respond even if a broadcast request is executed.
- 'FC' = 16 (10<sub>H</sub>)
- The function code is two bytes long. The Hi byte indicates the function code group (see Table 3.2), and the Lo byte represents a function code identification number (0 to 99).
- The number of write data is two bytes long, and the setting range is from 1 to 50. If 51 or a higher value is set, error response will result.
- The byte count field is one byte long, and the setting range is from 2 to 100. Set a value equivalent to the double of the number of write data.
- Set the lowest order code (the data on the function code requested by the query) at the first two bytes of the write data, and the higher order data (address plus 1, address plus 2 ...) at the following bytes.
- If the write data contains an unused function code, the writing will be ignored, which will not result in an error.

#### Interpretation of normal response

- With regard to the function code and the number of write data, the same values as those of the query will be sent back.

#### [4] Diagnostics

#### <u>Query</u>

| 1 byte             | 1 byte          | 2  | bytes       | 2          | bytes | 2 bytes     |
|--------------------|-----------------|----|-------------|------------|-------|-------------|
| Station<br>address | 08 <sub>H</sub> |    | nction code | Write data |       | Error check |
| address            |                 | 0  | 000н        |            |       |             |
|                    |                 | Hi | Lo          | Hi         | Lo    |             |

#### Normal response

| 1 byte          | 1 byte          | 2 bytes                                | 2 bytes    | 2 bytes     |
|-----------------|-----------------|----------------------------------------|------------|-------------|
| Station address | 08 <sub>H</sub> | Sub function code<br>0000 <sub>H</sub> | Write data | Error check |

#### How to set a query

- This request cannot use broadcast. Station address 0 will become invalid (no response).
- 'FC' = 8 (08<sub>H</sub>)
- Set the sub function code field to be 2 bytes long fixed  $0000_{H}$ . Error response will result if data other than  $0000_{H}$  is set.
- The write data field is two bytes long, and any contents of data can be set.

#### Interpretation of normal response

- The frame is the same as the query.

[5] Read coil status (not supported by FRENIC-Mini)

#### <u>Query</u>

| 1 byte          | 1 byte          | 2 b    | ytes         | 2  | bytes    | 2 bytes     |
|-----------------|-----------------|--------|--------------|----|----------|-------------|
| Station address | 01 <sub>H</sub> | Coil a | Coil address |    | of coils | Error check |
|                 |                 | Hi     | Ιo           | Hi | lo       |             |

#### Normal response

| 1 byte             | 1 byte          | 1 byte     | 1 to 10 bytes | 2 bytes     |
|--------------------|-----------------|------------|---------------|-------------|
| Station<br>address | 01 <sub>H</sub> | Byte count | Read data     | Error check |

#### How to set a query

- Broadcast with station address 0 is not usable. If this address is used, no response is returned.
- 'FC'=1 (01<sub>H</sub>)
- Read out a coil (bit data) by specifying the top address of the coil to be read out and the number of points read out (number of coils).
- For the assignment of a coil (bit data), see table 3.3. For each content, refer to the S and M codes in the remarks column.

| Coil<br>number | +7   | +6 | +5  | +4  | +3   | +2   | +1  | +0  | Remarks                                   |
|----------------|------|----|-----|-----|------|------|-----|-----|-------------------------------------------|
| 1              | X6   | X5 | X4  | X3  | X2   | X1   | REV | FWD | S06: Run operation command                |
| 9              | RST  | XR | XF  | -   | -    | X9   | X8  | X7  | (Read/Write)                              |
| 17             | VL   | TL | NUV | BRK | INT  | EXT  | REV | FWD | M14: Run status<br>(Read only)            |
| 25             | BUSY | N  | /R  | RL  | ALM  | DEC  | ACC | IL  | (rtead only)                              |
| 33             | FAN  | KP | OL  | IPF | SWM2 | RDY  | FDT | FAR | M70: Run status 2<br>(Read only)          |
| 41             | -    | -  | IDL | ID  | OPL  | LIFE | OH  | TRY | (Read only)                               |
| 49             | X6   | X5 | X4  | X3  | X2   | X1   | REV | FWD | M13: Run operation                        |
| 57             | RST  | XR | XF  | _   | _    | X9   | X8  | X7  | command (final<br>command)<br>(Read only) |
| 65             | -    | -  | -   | Y5  | Y4   | Y3   | Y2  | Y1  | M15: General-purpose<br>output terminal   |
| 73             | -    | -  | -   | -   | -    | -    | -   | 30  | information<br>(Read only)                |

Table 3.3 Description of coil (bit data)

- The "--" symbols in the table mean that the bit is reserved and always zero.
- Coil addresses are 0 to 79, calculated by subtracting one from coil numbers. If a coil address is 80 or more, an error occurs because of an incorrect address.
- The number of coils is 1 to 80. If the number of coils exceeds the range, an error occurs because of an incorrect address.
- No error occurs even if the sum of the numbers of coil addresses and coils exceeds the coil range.

Chap. 3 Modbus RTU PROTOCOL

#### Interpretation of normal response

- Data are stored from the LSB (the rightmost bit in the table above) in ascending order of coil number. When a coil is turned on, the data becomes one, and all the remaining bits are changed to zero.
- The byte length of the read data is filled in the byte count field.
- For a data example, see table 3.4.

|                 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Data's 1st byte | BRK   | INT   | EXT   | REV   | FWD   | RST   | XR    | XF    |
| Data's 2nd byte | 0     | 0     | 0     | 0     | 0     | 0     | 0     | NUV   |

Table 3.4 Example of coil address = 13 and the number of coils = 9

#### [6] Force single coil (not supported by FRENIC-Mini)

#### <u>Query</u>

| 1 byte          | 1 byte          | 2 1    | oytes   |    | 2 bytes | 2 bytes     |
|-----------------|-----------------|--------|---------|----|---------|-------------|
| Station address | 05 <sub>н</sub> | Coil a | address |    | Data    | Error check |
|                 |                 | Hi     | Lo      | Hi | Lo      |             |

#### Normal response

| 1 byte          | 1 byte | 2 bytes      | 2 bytes | 2 bytes     |
|-----------------|--------|--------------|---------|-------------|
| Station address | 05н    | Coil address | Data    | Error check |

#### How to set a query

- Broadcast with station address 0 is not usable. If used, no response is returned.
- 'FC' = 5 (05<sub>H</sub>)
- Turn on/off a coil (bit data) by specifying only a bit.
- For the assignment of a coil (bit data), see table 3.5. For each content, refer to the S and M codes in the remarks column.

| Coil<br>number | +7  | +6 | +5 | +4 | +3 | +2 | +1  | +0  | Remarks                    |
|----------------|-----|----|----|----|----|----|-----|-----|----------------------------|
| 1              | X6  | X5 | X4 | Х3 | X2 | X1 | REV | FWD | S06: Run operation command |
| 9              | RST | XR | XF | -  | -  | X9 | X8  | X7  | (Read/Write)               |

| Table 3.5 | Description | of coil ( | (bit data) |  |
|-----------|-------------|-----------|------------|--|
|           |             |           |            |  |

- The "--" symbol in the table means that the bit is reserved, and writing is ignored.
- The coil address is 0 to 15, calculated by subtracting one from the coil number. If a coil address is 16 or more, an error occurs because of an incorrect address.
- When a coil is turned off, data are  $0000_{H}$ . When a coil is turned on, data are FF00<sub>H</sub>.

#### Interpretation of normal response

- The format of normal response is the same as that of inquiry.
- No response is returned to the broadcast command.

[7] Force multiple coils (not supported by FRENIC-Mini)

#### Query

| 1 byte             | 1 byte          | 2 bytes      | 2   | bytes    | 1 byte       | 1 to 2 l | oytes | 2 bytes     |
|--------------------|-----------------|--------------|-----|----------|--------------|----------|-------|-------------|
| Station<br>address | 0F <sub>H</sub> | Coil address | No. | of coils | Byte account | Write    | data  | Error check |
| 4441635            |                 | Hi Lo        | Hi  | Ιo       |              | Hi       | Ιo    |             |

#### Normal response

| 1 byte          | 1 byte          | 2 b    | ytes   | 2 b          | ytes | 2 bytes     |
|-----------------|-----------------|--------|--------|--------------|------|-------------|
| Station address | 0F <sub>H</sub> | Coil a | ddress | No. of coils |      | Error check |
|                 |                 | Hi     | Lo     | Hi           | Lo   |             |

#### How to set a query

- Broadcast with station address 0 is not usable. If is used, no response is returned.
- 'FC' = 15 (0F<sub>H</sub>)
- Write a coil (bit data) by specifying the top address of the coil to be written, the number of points written (number of coils), and data to be written.
- For the assignment of a coil (bit data), see table 3.6. For each content, refer to the S and M codes in the remarks column.

| Coil<br>number | +7  | +6 | +5 | +4 | +3 | +2 | +1  | +0  | Remarks                    |
|----------------|-----|----|----|----|----|----|-----|-----|----------------------------|
| 1              | X6  | X5 | X4 | X3 | X2 | X1 | REV | FWD | S06: Run operation command |
| 9              | RST | XR | XF | -  | -  | X9 | X8  | X7  | (Read/Write)               |

Table 3.6 Description of coil (bit data)

- The "-" symbol in the table means that the bit is reserved and always zero.
- The coil address is 0 to 15, calculated by subtracting one from the coil number. If a coil address is 16 or more, an error occurs because of an incorrect address.
- If the byte count is 0 or 3 or more, an error occurs because of an incorrect data.
- The number of coils is 1 to 16. If 0 or 17 or more, an error occurs because of an incorrect address.
- No error occurs even if the coil address plus number of coils exceeds the coil range.
- If the number of coils is 9 or more and the byte count is 1 or less, an error occurs because of an incorrect data.
- If the number of coils is 8 or less and the byte count is 2, no error occurs.
- Data are stored from the LSB (the rightmost bit in the table above) in ascending order of coil number. When a coil is turned on, the data becomes one. When a coil is turned off, the data becomes zero. All the remaining bits are ignored.
- The byte count field indicates the byte length of the write data.
- For a data example, see table 3.7.

|                 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Data's 1st byte | X8    | X7    | X6    | X5    | X4    | Х3    | X2    | X1    |
| Data's 2nd byte | 0     | 0     | 0     | 0     | 0     | 0     | 0     | X9    |

Table 3.7Example of coil address = 2 and the number of coils = 9

Chap. 3 Modbus RTU PROTOCOL

#### Interpretation of normal response

- The forms of coil address and number of coils are the same as the forms of query.
- No response is returned to the broadcast command.

#### [8] Error response

If the inverter receives an improper query, it will not execute it, which will result in error response.

#### Error response

| 1 byte          | 1 byte             | 1 byte  | 2 bytes     |
|-----------------|--------------------|---------|-------------|
| Station address | Exception function | Subcode | Error check |

#### Interpretation of error response

- The station address is the same as that of the query.
- The exception function is a value obtained by adding 80<sub>H</sub> to the 'FC' of the query message (or the value of the 'FC' if the 'FC' is larger than 80<sub>H</sub>).

For example, when the 'FC' is 3, the exception function is  $3 + 128 = 131 (83_H)$ .

- The subcode represents the code of the reason for the improper query.

Table 3.8 Subcodes

| Subcode |                                            | Item                  | Description                                                                                                                                                                |
|---------|--------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | Impr                                       | roper 'FC'            | FRENIC-Mini: A 'FC' other than 3, 6, 8, or 16 has been received.                                                                                                           |
|         |                                            |                       | FRENIC-Eco: A 'FC' other than 1, 3, 5, 6, 8, 15, or 16 has been received.                                                                                                  |
| 2       | Improper Improper<br>address function code |                       | An unused function code or a function code out of range<br>was received.<br>When the read/write data (except the first one) containing<br>an unused function code.         |
|         |                                            |                       | <ul> <li>In Read holding registers</li> <li>Zero (0) will be read, which will not result in an error.</li> </ul>                                                           |
|         |                                            |                       | <ul> <li>In preset multiple registers</li> <li>The writing will be ignored, which will not result in an error.</li> </ul>                                                  |
|         |                                            | Improper<br>number of | - When the number of read/write data is not between 1 and 50.                                                                                                              |
|         |                                            | data                  | <ul> <li>No error will result when the value of the function code<br/>plus the number of data is beyond the setting range of<br/>the function code.</li> </ul>             |
|         | Subfunction<br>code error<br>(diagnostics) |                       | A value other than 0 was received although the subfunction code as the diagnostics was fixed to 0.                                                                         |
| 3       | Improper<br>data                           | Data range<br>error   | The write data is beyond the permissible write range.                                                                                                                      |
| 7       | NAK                                        | No right of writing   | FRENIC-Mini: This error does not occur.<br>FRENIC-Eco: No right of writing by H30/y98/y99                                                                                  |
|         |                                            | Write disable         | <ul> <li>Writing was attempted to the functions to which writing<br/>from RTU is prohibited or to which writing is disabled<br/>during operation.</li> </ul>               |
|         |                                            |                       | <ul> <li>Writing was attempted to a function code (other than<br/>S01, S05, S06, S13, and S14) that could not be written<br/>when the voltage was insufficient.</li> </ul> |

- If response is sent back to an improper query, a subcode will be set in an error code (that can be referred to with M26).

## 3.1.5 Communications examples

Typical communications examples are shown below (the station address is 5 in all cases).

#### (Example 1) M06: Output frequency 1 will be read.

#### Query (host $\Rightarrow$ inverter)

| 05 03 08 06 | 00 01 | 67 EF |
|-------------|-------|-------|
|-------------|-------|-------|

#### Normal response (inverter $\Rightarrow$ host)

| 05 | 03 | 01 | 27 | 10 | A3 | B8 |
|----|----|----|----|----|----|----|

The detected speed value is  $2710_{H}$ , or  $10000_{d}$ . The actual frequency is 30 Hz according to the expression shown below:

 $10000 \times \frac{\text{Maximum output frequency}}{20000} = 30 \text{ (Hz)}$ 

(Maximum output frequency: 60 Hz)

## (Example 2) S01: The value of 15Hz will be written to frequency command (maximum output frequency: 60 Hz).

According to the expression shown below, the value to be written is 1388 H.

 $15Hz \times \frac{20000}{60 (Hz)} = 5000_{d} = 1388_{H}$ 

#### Query (host $\Rightarrow$ inverter)

| 05 06 07 01 13 | 88 | D5 AC |
|----------------|----|-------|
|----------------|----|-------|

#### Normal response (inverter $\Rightarrow$ host)

| 05 | 06 | 07 | 01 | 13 | 88 | D5 | AC |
|----|----|----|----|----|----|----|----|

## 3.2 Host Side Procedures

## 3.2.1 Inverter's response time

Upon receipt of a query from the host, the inverter executes the queried transaction and sends back response after the response time shown below:



#### t1: Response interval time

The response interval time is the longest time out of the time setting by a function code, 3-character time, or inverter's processing time.

- (1) y09/y19: setting of response interval time
   0.00-1.00(s), factory shipment setting: 0.01(s)
   You can set the time from receiving a request issued from a host to starting to send a response. By setting a response interval time, even the host side which is slower than the inverter can meet timing.
- (2) 3-character time (maximum value)

 Table 3.9
 3-character time (maximum time)

| Baud rate (bps)       | 2400 | 4800 | 9600 | 19200 | 38400<br>(Not supported by<br>FRENIC-Mini) |
|-----------------------|------|------|------|-------|--------------------------------------------|
| 3-character time (ms) | 15   | 10   | 5    | 5     | 5                                          |

(3) Inverter processing time (The data volume shown below indicates the number of words.)1) Read holding registers, read coil status, multiple read holding registers

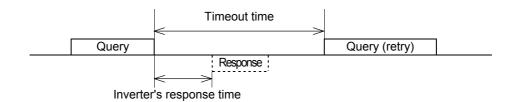
| Table 3.10 | Inverter pr | ocessing time  |
|------------|-------------|----------------|
| 10010 0.10 | inventer pr | oocooning time |

| Data count | Inverter processing time (minimum to maximum) |
|------------|-----------------------------------------------|
| 1 to 7     | 5 to 10 (ms)                                  |
| 8 to 16    | 10 to 15 (ms)                                 |
| n          | Int ((n-1)/8)×5 to int ((n-1)/ 8)×5+5 (ms)    |

2) Preset single register, preset multiple registers, force single coil, and force multiple coils

| Data count | Inverter processing time (minimum to maximum) |
|------------|-----------------------------------------------|
| 1          | 25 to 30 (ms)                                 |
| 2          | 45 to 50 (ms)                                 |
| 3          | 65 to 70 (ms)                                 |
| 4          | 85 to 90 (ms)                                 |
| n          | n×20+5 to n×20+10 (ms)                        |

Table 3.11 Inverter processing time


However, the inverter processing time is 5 (s) maximum when H03=1 is written, and 500(ms) maximum when H03=2 is written in P02.

- 3) Maintenance code: 10 (ms)
- t2: See section 3.2.3 "Receiving preparation complete time and message timing from the host."

## 3.2.2 Timeout processing

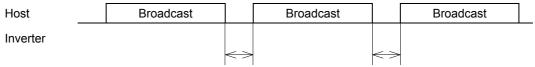
To read/write data from/to the host, transmit the next frame after confirming response. If response is not transmitted from the inverter for more than a specified period of time (timeout time), it is a timeout, and perform a retry. (If a retry begins before a timeout time elapses, the requested frame cannot be received properly.)

The timeout time must be set longer than the response time of the inverter. In case of a timeout, retransmit the same frame or read details of the error (M26) to confirm whether the inverter sends back normal response. If normal response is returned, this indicates that some transient transmission error occurred due to noise or for other reasons, and subsequent communications is normal. (However, if this phenomenon frequently occurs even when normal response is sent back, some problem may exist. Perform a close investigation.) In case of no response, perform another retry. If the number of retries exceeds the set value (generally about three times), there may be a problem with the hardware and the software of the host. Investigate and correct the cause.



## 3.2.3 Receiving preparation complete time and message timing from the host

The time from the return of response by the inverter until the completion of receiving preparation of the communications port (switching from transmission to receiving) is called a receiving preparation complete time.


Transmit the following messages after the receiving preparation complete time:

Receiving preparation complete time: 3-character time

#### In the case of broadcast

Upon receipt of a query message from the host by broadcast, the inverter executes the query and enters the receiving enabled status.

When sending a message from the host after broadcast is performed, send the message after the inverter processing time shown in section 3.2.1 "Inverter response time" has passed.



Inverter processing time Inverter processing time

## 3.2.4 Frame synchronization method

Since the RTU transmits and receives binary data without using header characters for frame synchronization, a frame synchronization system is defined as a time without data to identify the head of the frame.

If data communications does not occur for a period equal to three characters (33 bits including the start and stop bits) at the current transmission speed during receiving standby, initialize the frame information, and consider the first received data the first byte of the frame. If a character interval reaches the length of three characters or more while a frame is received, the frame is discarded.

For this reason, the host must transmit data at a time interval of three or less characters between two characters.

| Data transmitted by host |                 | Three or         | more cha        |                 |                  |  |
|--------------------------|-----------------|------------------|-----------------|-----------------|------------------|--|
|                          | First character | Second character | $< \rightarrow$ | Third character | Fourth character |  |
| Data received            |                 |                  | 1               |                 | 1 [              |  |
|                          | First character | Second character |                 | First character | Second character |  |

With regard to data to another station, messages from the host and response from that station will be received. In response transmission to identify the head of the frame, a waiting time of three characters (33 bits including the start and stop bits) is required between the completion of data receipt by the station and the start of transmission.

Any devices multidropped also requires such a waiting time.

## 3.3 Communications Errors

## 3.3.1 Categories of communications errors

The communications-related errors the inverter detects are listed below:

Table 3.12 Communications errors detected by inverter

| Error<br>category                             | Error name                               | Description                                                                                                                                                              | Error code<br>(M26)  |
|-----------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Logical error                                 | Improper 'FC'                            |                                                                                                                                                                          | 1(01 <sub>H</sub> )  |
|                                               | Improper address                         | See "Table 3.8 Subcodes" shown                                                                                                                                           | 2(02 <sub>H</sub> )  |
|                                               | Improper data                            | in 3.1.4 [8].                                                                                                                                                            | 3(03 <sub>H</sub> )  |
|                                               | NAK                                      |                                                                                                                                                                          | 7(07 <sub>H</sub> )  |
| Transmission<br>error                         | CRC error                                | The frame to the local station is found unmatched in CRC collation.                                                                                                      | 71(47 <sub>H</sub> ) |
|                                               | Parity error                             | The parity is unmatched.                                                                                                                                                 | 72(48 <sub>H</sub> ) |
|                                               | Other errors                             | Receiving errors other than the<br>abovementioned (framing error,<br>overrun error)                                                                                      | 73(49 <sub>H</sub> ) |
| Communica-<br>tions<br>disconnection<br>error | Communications<br>disconnection<br>error | The inverter did not receive a<br>normal frame addressed to local or<br>to other stations within the<br>communications disconnection<br>time set with the function code. | _                    |

#### Logical error (error codes 1 to 7)

When a logical error is detected, an error response frame reports it. For further information, see "3.1.4 [8] Error response."

#### Transmission error (error codes 71 to 73)

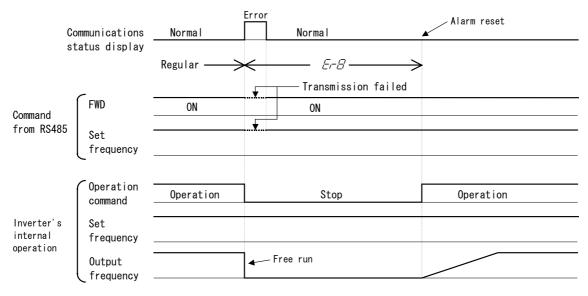
When a transmission error occurs eight straight times, it is handled as a communications error. However, the inverter does not return response in order to avoid overlapping of response from multiple inverters. The count of eight straight times will be cleared upon normal receipt of a frame to another station or to the local inverter (station) itself.

#### **Communications disconnection error**

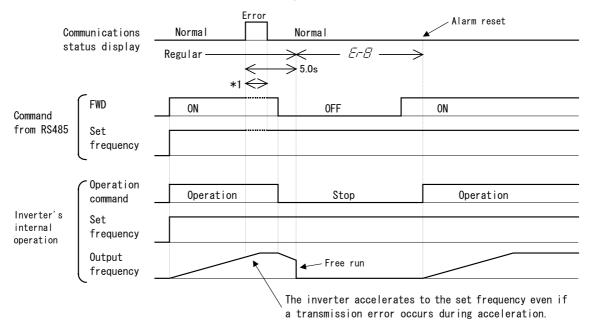
If the inverter in operation does not receive a normal frame to itself or to other stations when it has received a normal frame more than once and is operating via communications (frequency command or operation command), this status is considered disconnected.

If the status of disconnection continues for the communication disconnection time set up by function code (y08, y18), error processing is performed as a communication error.

- 1) Communications disconnection detection time (y08, y18): 0 (without detection), 1 to 60 (seconds)
- 2) Condition to clear communications disconnection detection timer:


It will be cleared in a status other than disconnection.

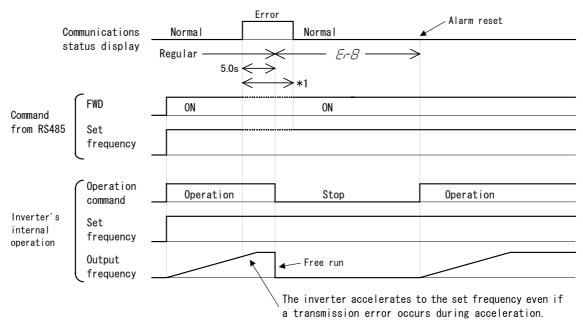
When it is necessary to take action against errors by factor, the factor can be identified by reading M26. (M26 stores the latest communications error codes.)


## 3.3.2 Operations in case of errors

The action when a transmission or communications disconnection error occurs can be selected with function code y02, y12. (For further information, see "2.4 Making RS485-related settings.") This section shows specific examples of action by different settings of function code y02. (The same operation is performed for y12 as well. In this case, the y02 and y03 in the figure are replaced with y12 and y13, and the error indication becomes  $\frac{1}{2}-\frac{1}{2}$ .

<u>When y02 = 0</u> (mode in which the inverter is forced to immediately stop in case of communications error)

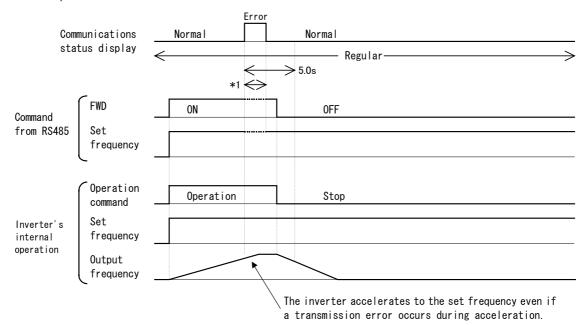



<u>When y02 = 1 and y03 = 5.0 (seconds)</u> (mode in which the inverter is forced to stop five seconds after a communications error occurred)



\*1 For the period until communications is recovered, the command (command data, operation data) executed just before the communications error had occurred is retained.

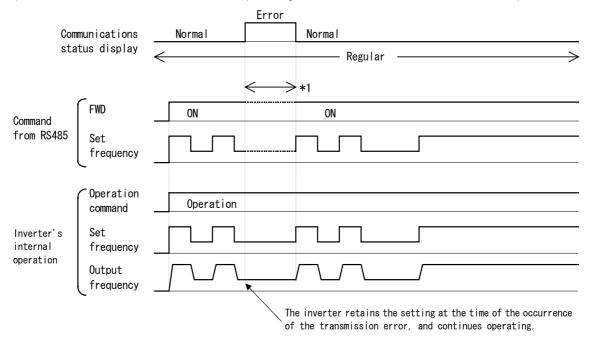
#### When y02 = 2 and y03 = 5.0 (seconds)


(when communications is not recovered although five seconds elapsed from the occurrence of a communications error, and an  $\mathcal{E}_{r}-\mathcal{B}$  trip occurs)



\*1 For the period until communications is recovered, the command (command data, operation data) executed just before the communications error had occurred is retained.

#### When y02 = 2 and y03 = 5.0 (seconds)


(when a communications error occurred but communications was recovered within five seconds)



\*1 For the period until communications is recovered, the command (command data, operation data) executed just before the communications error had occurred is retained.

#### When y02 = 3

(mode in which the inverter continues operating when a communications error occurs)



\*1 For the period until communications is recovered, the command (command data, operation data) executed just before the communications error had occurred is retained.

## 3.4 CRC-16

## 3.4.1 Overview of the CRC-16

The CRC (cyclic redundancy check) is a system to confirm whether there is any error in the communications frame during data transmission.

The CRC is among the most effective error check systems. The transmission station calculates and adds CRC data to the last block of the frame, and the receiving station also calculates CRC data against the data received, and compares them with each other.

#### Steps to calculate CRC data

- Divide data expressed as a polynomial (for example, 0000 0001 0000 0011 0000 0011 0000 0010 0000 0001 0100, the 48-bit data shown in section 3.4.3 "Calculation example"  $\rightarrow X^{40}+X^{33}+X^{25}+X^{24}+X^{17}+X^4+X^2$ ) by a generative polynomial expression (17 bits;  $X^{16}+X^{15}+X^2+1$ ). CRC data is the remainder (16 bits) of this division.
- Ignore the quotient, and send a message with the remainder added to the final two characters of the data.
- The receiving station divides this message (with the CRC added) by the generative polynomial expression, and considers the transmitted message to have been received without any error if the "remainder" is 0.

#### <u>CRC-16</u>

The generative polynomial expression is expressed as a multiplier of X, such as  $X^3 + X^2 + 1$ , in place of the description of binary code 1101. Although any prime polynomial expression is acceptable as the generative polynomial expression, some standard generative polynomial expressions for optimizing error detection are defined and proposed. The RTU protocol uses the generative polynomial expression ( $X^{16} + X^{15} + X^2 + 1$ ) corresponding to binary code 1 (1000 0000 0101). In this case, the CRC generated is well known as CRC-16.

## 3.4.2 Algorithm

Figure 3.1 on the following page shows the algorithm for calculating CRC-16. Consult it together with the calculation example that follows.

In this figure, the transmission station calculates CRC data and finally adds it to the transmission frame as a check code.

The receiving station uses the same algorithm to perform a transaction. However, it collates the CRC data it calculated with the transmitted CRC data.



Figure 3.1 CRC algorithm

## 3.4.3 Calculation example

#### Example of transmitting read data

Station address = 1, 'FC' = 3, function code = P02 (P =  $03_{H}$ ,  $02 = 02_{H}$ ), number of read data = 20, GP = generative polynomial expression(1010 0000 0000 0001)

| Station<br>address | 'FC'            | Funct           | ion code        | Number of read data |                 |  |  |  |
|--------------------|-----------------|-----------------|-----------------|---------------------|-----------------|--|--|--|
| 01 <sub>H</sub>    | 03 <sub>H</sub> | 03 <sub>H</sub> | 02 <sub>H</sub> | 00 <sub>H</sub>     | 14 <sub>H</sub> |  |  |  |

| N         PROCESS         15         14         13         12         11         10         9         8         7         6         5         4         3         2         1         0         Flag           1         Initial data R = "FFF"         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                     |    |                             |    |    |    | 0  |    |    | aioai | alloi |   |   |   |   |   |   |   |   |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------|----|----|----|----|----|----|-------|-------|---|---|---|---|---|---|---|---|------|
| 2       1 <sup>st</sup> data byte       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                 | Ν  | PROCESS                     | 15 | 14 | 13 | 12 | 11 | 10 | 9     | 8     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | Flag |
| 3       CRC = No.1 Xor No.2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                       | 1  |                             | 1  | 1  | 1  | 1  | 1  | 1  | 1     | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |      |
| 4       Shift >> 2 (up to flag = 1)       0       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                       | 2  | 1 <sup>st</sup> data byte   | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |      |
| S       CRC = No.4 Xor GP       1       0       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                         | 3  | CRC = No.1 Xor No.2         | 1  | 1  | 1  | 1  | 1  | 1  | 1     | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |      |
| 6       Shift >> 2       0       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                | 4  | Shift >> 2 (up to flag = 1) | 0  | 0  | 1  | 1  | 1  | 1  | 1     | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5  | CRC = No.4 Xor GP           | 1  | 0  | 0  | 1  | 1  | 1  | 1     | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |      |
| 8         Shift >> 2         0         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                              | 6  | Shift >> 2                  | 0  | 0  | 1  | 0  | 0  | 1  | 1     | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1    |
| 9         CRC = No.8 Xor GP         1         0         0         0         0         0         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1     <                                                                                                                                                                                                                                 | 7  | CRC = No.6 Xor GP           | 1  | 0  | 0  | 0  | 0  | 1  | 1     | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8  | Shift >> 2                  | 0  | 0  | 1  | 0  | 0  | 0  | 0     | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1    |
| Institution No. 8 terminated)         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <thi< td=""><td>9</td><td>CRC = No.8 Xor GP</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>0</td><td>   </td></thi<> | 9  | CRC = No.8 Xor GP           | 1  | 0  | 0  | 0  | 0  | 0  | 0     | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 |                             | 0  | 0  | 1  | 0  | 0  | 0  | 0     | 0     | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11 |                             | 1  | 0  | 0  | 0  | 0  | 0  | 0     | 0     | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12 | 2 <sup>nd</sup> data byte   | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |      |
| 15       CRC = No.14 Xor GP       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th=""> <th1< th="">       1</th1<></th1<>                                                                                                                                                                                                                                                                                                                               | 13 | CRC = No.11 Xor No.12       | 1  | 0  | 0  | 0  | 0  | 0  | 0     | 0     | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |      |
| 16Shift >> 101110000000111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 <th< td=""><td>14</td><td>Shift &gt;&gt; 1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>0</td><td>1</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14 | Shift >> 1                  | 0  | 1  | 0  | 0  | 0  | 0  | 0     | 0     | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15 | CRC = No.14 Xor GP          | 1  | 1  | 1  | 0  | 0  | 0  | 0     | 0     | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |      |
| 18       Shift >> 2       0       0       1       1       1       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <th< td=""><td>16</td><td>Shift &gt;&gt; 1</td><td>0</td><td>1</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td></th<>                                                                                                                               | 16 | Shift >> 1                  | 0  | 1  | 1  | 1  | 0  | 0  | 0     | 0     | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 | CRC = No.16 Xor GP          | 1  | 1  | 0  | 1  | 0  | 0  | 0     | 0     | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 | Shift >> 2                  | 0  | 0  | 1  | 1  | 0  | 1  | 0     | 0     | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19 | CRC = No.18 Xor GP          | 1  | 0  | 0  | 1  | 0  | 1  | 0     | 0     | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 | Shift >> 2                  | 0  | 0  | 1  | 0  | 0  | 1  | 0     | 1     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1    |
| (shift of No. 8 terminated)       1       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                       | 21 | CRC = No.20 Xor GP          | 1  | 0  | 0  | 0  | 0  | 1  | 0     | 1     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |      |
| 24CRC = No.22 Xor No.230010100100100011125Shift >> 100001000010101000111126CRC = No.25 Xor GP101100010101000101000011111111111111000011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22 | (shift of No. 8 terminated) | 0  | 0  | 1  | 0  | 0  | 0  | 0     | 1     | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0    |
| 25       Shift >> 1       0       0       0       1       0       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       0       0       1       0       1       0       0       0       1       0       1       0       0       0       0       0       1       0       1       0       0       0       0       0       1       0       1       0       0       0       0       0       1       0       1       0       0       0       0       1       1       0       0       0       1       1       0       0       0       1       1       0       0       1       0       0       0       0       1       1       1       1       1       0       1       1       0       0       0       0       0       0       0       0       0       0 <t< td=""><td>23</td><td>3<sup>rd</sup> data byte</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>1</td><td></td></t<>                                                                                                                          | 23 | 3 <sup>rd</sup> data byte   | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |      |
| 26CRC = No.25 Xor GP10111000010000000000000000000000000000000000000000000000001010000001010000010100000101000001101100011000011000001101010101101101101101101101101111111111111111111111111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24 | CRC = No.22 Xor No.23       | 0  | 0  | 1  | 0  | 0  | 0  | 0     | 1     | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25 | Shift >> 1                  | 0  | 0  | 0  | 1  | 0  | 0  | 0     | 0     | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1    |
| 28       CRC = No.27 Xor GP       1       0       1       0       1       0       1       1       0       0       1       1       0       0       1       1       1       0       0       1       1       1       0       0       1       1       1       0       0       1       1       1       0       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       0       0       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                       | 26 | CRC = No.25 Xor GP          | 1  | 0  | 1  | 1  | 0  | 0  | 0     | 0     | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |      |
| 29       Shift >> 1       0       1       0       1       0       0       1       0       1       1       0       0       1       1       1       0       1       1       1       0       0       1       1       1       0       0       1       1       1       1       1       1       1       1       1       1       1       1       0       1       1       1       1       0       0       1       1       1       1       1       1       1       1       1       1       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td< td=""><td>27</td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>1</td></td<>                                                                                                                                               | 27 |                             | 0  | 0  | 0  | 0  | 0  | 0  | 1     | 0     | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1    |
| 30       CRC = No.29 Xor GP       1       1       1       1       1       0       0       0       1       1       0       0       0       0       0       0       0       0       0       1       1       0       0       0       1       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                       | 28 | CRC = No.27 Xor GP          | 1  | 0  | 1  | 0  | 0  | 0  | 1     | 0     | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |      |
| 31       4 <sup>th</sup> data byte       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       1       1       1       0       0       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th=""> <th1< th=""> <th1< th="">       &lt;</th1<></th1<></th1<>                                                                                                                                                                                                                                                                                                 | 29 |                             | -  | 1  | 0  | 1  | 0  | 0  | 0     | 1     | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1    |
| 32       CRC = No.30 Xor No.31       1       1       1       1       0       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       1       0       0       1       1       1       0       0       1       1       1       1       0       0       1       1       1       1       1       1       1       0       0       1       1       1       1       0       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td></td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td>                                                                                                                                      |    |                             | 1  | 1  | 1  | 1  | 0  | 0  | 0     | 1     | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |      |
| 33       Shift >>2       0       0       1       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       1       0       0       1       1       1       0       0       1       1       1       0       0       1       1       1       1       0       0       1       1       1       0       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                | 31 | 4 <sup>th</sup> data byte   | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |      |
| 34       CRC = No.33 Xor GP       1       0       0       1       1       1       0       0       1       0       0       1       1       0       0       1       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       1       1       1       0       0       1       1       0       1       1       1       0       1       1       1       1       0       1       1       1       0       1       1       1       0       1       1       1       0       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                       | 32 | CRC = No.30 Xor No.31       | 1  | 1  | 1  | 1  | 0  | 0  | 0     | 1     | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |      |
| 35       Shift >> 1       0       1       0       0       1       1       0       0       1       0       1       0       1       0       1       0       1       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       1       0       1       1       0       1       1       1       0       1       1       1       0       1       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       1       0       1       1       1       0       1       1       1       0       1       1       0       1       1       1       0       1       1       0       1       1       0 <td< td=""><td>33</td><td>Shift &gt;&gt;2</td><td>0</td><td>0</td><td>1</td><td>1</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td></td<>                                                                                                                                | 33 | Shift >>2                   | 0  | 0  | 1  | 1  | 1  | 1  | 0     | 0     | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1    |
| 36         CRC = No.35 Xor GP         1         1         1         0         1         1         0         0         1         0         1         1         0         1         1         0         1         1         0         1         1         0         1         1         0         1         1         0         1         1         0         1         1         0         1         1         0         1         1         0         1         1         0         1         1         0         1         1         0         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34 | CRC = No.33 Xor GP          | 1  | 0  | 0  | 1  | 1  | 1  | 0     | 0     | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35 | Shift >> 1                  | 0  | 1  | 0  | 0  | 1  | 1  | 1     | 0     | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1    |
| 37       Shift >> 1       0       1       1       0       1       1       0       0       1       0       1       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1 <td< td=""><td>36</td><td>CRC = No.35 Xor GP</td><td>1</td><td>1</td><td>1</td><td>0</td><td>1</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>1</td><td>1</td><td>0</td><td>1</td><td></td></td<>                                                                                                                              | 36 | CRC = No.35 Xor GP          | 1  | 1  | 1  | 0  | 1  | 1  | 1     | 0     | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37 | Shift >> 1                  | 0  | 1  | 1  | 1  | 0  | 1  | 1     | 1     | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1    |

Table 3.13 CRC data calculation table

(To be continued)

| Ν  | PROCESS                                   | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5        | 4 | 3 | 2 | 1 | 0 | Flag |
|----|-------------------------------------------|----|----|----|----|----|----|---|---|---|---|----------|---|---|---|---|---|------|
| 38 | CRC = No.37 Xor GP                        | 1  | 1  | 0  | 1  | 0  | 1  | 1 | 1 | 0 | 0 | 0        | 1 | 0 | 1 | 1 | 1 |      |
| 39 | Shift >> 1                                | 0  | 1  | 1  | 0  | 1  | 0  | 1 | 1 | 1 | 0 | 0        | 0 | 1 | 0 | 1 | 1 | 1    |
| 40 | CRC = No.39 Xor GP                        | 1  | 1  | 0  | 0  | 1  | 0  | 1 | 1 | 1 | 0 | 0        | 0 | 1 | 0 | 1 | 0 |      |
| 41 | Shift >>2                                 | 0  | 0  | 1  | 1  | 0  | 0  | 1 | 0 | 1 | 1 | 1        | 0 | 0 | 0 | 1 | 0 | 1    |
| 42 | CRC = No.41 Xor GP                        | 1  | 0  | 0  | 1  | 0  | 0  | 1 | 0 | 1 | 1 | 1        | 0 | 0 | 0 | 1 | 1 |      |
| 43 | Shift >> 1                                | 0  | 1  | 0  | 0  | 1  | 0  | 0 | 1 | 0 | 1 | 1        | 1 | 0 | 0 | 0 | 1 | 1    |
| 44 | CRC = No.43 Xor GP                        | 1  | 1  | 1  | 0  | 1  | 0  | 0 | 1 | 0 | 1 | 1        | 1 | 0 | 0 | 0 | 0 |      |
| 45 | 5 <sup>th</sup> data byte                 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0        | 0 | 0 | 0 | 0 | 0 |      |
| 46 | CRC = No.44 Xor No.45                     | 1  | 1  | 1  | 0  | 1  | 0  | 0 | 1 | 0 | 1 | 1        | 1 | 0 | 0 | 0 | 0 |      |
| 47 | Shift >> 5                                | 0  | 0  | 0  | 0  | 0  | 1  | 1 | 1 | 0 | 1 | 0        | 0 | 1 | 0 | 1 | 1 | 1    |
| 48 | CRC = No.47 Xor GP                        | 1  | 0  | 1  | 0  | 0  | 1  | 1 | 1 | 0 | 1 | 0        | 0 | 1 | 0 | 1 | 0 |      |
| 49 | Shift >> 2                                | 0  | 0  | 1  | 0  | 1  | 0  | 0 | 1 | 1 | 1 | 0        | 1 | 0 | 0 | 1 | 0 | 1    |
| 50 | CRC = No.49 Xor GP                        | 1  | 0  | 0  | 0  | 1  | 0  | 0 | 1 | 1 | 1 | 0        | 1 | 0 | 0 | 1 | 1 |      |
| 51 | Shift >> 1                                | 0  | 1  | 0  | 0  | 0  | 1  | 0 | 0 | 1 | 1 | 1        | 0 | 1 | 0 | 0 | 1 | 1    |
| 52 | CRC = No.51 Xor GP                        | 1  | 1  | 1  | 0  | 0  | 1  | 0 | 0 | 1 | 1 | 1        | 0 | 1 | 0 | 0 | 0 |      |
| 53 | 6 <sup>th</sup> data byte                 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0        | 1 | 0 | 1 | 0 | 0 |      |
| 54 | CRC = No.52 Xor No.53                     | 1  | 1  | 1  | 0  | 0  | 1  | 0 | 0 | 1 | 1 | 1        | 1 | 1 | 1 | 0 | 0 |      |
| 55 | Shift >> 3                                | 0  | 0  | 0  | 1  | 1  | 1  | 0 | 0 | 1 | 0 | 0        | 1 | 1 | 1 | 1 | 1 | 1    |
| 56 | CRC = No.55 Xor GP                        | 1  | 0  | 1  | 1  | 1  | 1  | 0 | 0 | 1 | 0 | 0        | 1 | 1 | 1 | 1 | 0 |      |
| 57 | Shift >> 2                                | 0  | 0  | 1  | 0  | 1  | 1  | 1 | 1 | 0 | 0 | 1        | 0 | 0 | 1 | 1 | 1 | 1    |
| 58 | CRC = No.57 Xor GP                        | 1  | 0  | 0  | 0  | 1  | 1  | 1 | 1 | 0 | 0 | 1        | 0 | 0 | 1 | 1 | 0 |      |
| 59 | Shift >> 2                                | 0  | 0  | 1  | 0  | 0  | 0  | 1 | 1 | 1 | 1 | 0        | 0 | 1 | 0 | 0 | 1 | 1    |
| 60 | CRC = No.59 Xor GP                        | 1  | 0  | 0  | 0  | 0  | 0  | 1 | 1 | 1 | 1 | 0        | 0 | 1 | 0 | 0 | 0 |      |
| 61 | Shift >> 1<br>(shift of No. 8 terminated) | 0  | 1  | 0  | 0  | 0  | 0  | 0 | 1 | 1 | 1 | 1        | 0 | 0 | 1 | 0 | 0 | 0    |
|    | Transmitted CRC data                      |    |    | 4  |    |    |    | 1 |   |   |   | <u> </u> |   |   |   | 4 |   |      |

 Table 3.13
 CRC data calculation table (Continued)

From the above calculation, the transmitted data is as shown below:

| ſ | Station<br>address | 'FC'            | Functio         | on code         |                 | r of read<br>ata | CRC             | check           |
|---|--------------------|-----------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|
| ĺ | 01 <sub>H</sub>    | 03 <sub>H</sub> | 03 <sub>H</sub> | 02 <sub>H</sub> | 00 <sub>H</sub> | 14 <sub>H</sub>  | E4 <sub>H</sub> | 41 <sub>H</sub> |

## 3.4.4 Frame length calculation

To calculate CRC-16, it is necessary to know the length of variable length messages. The length of all types of messages can be determined according to Table 3.14 Lengths of response messages.

| Table 3.14 | Length of response messages |
|------------|-----------------------------|
|------------|-----------------------------|

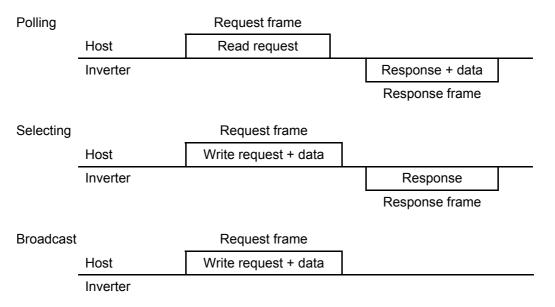
| 'FC'       | Description               | Query/Broadcast message<br>length (except CRC code) | Length of response<br>message<br>(except CRC code) |
|------------|---------------------------|-----------------------------------------------------|----------------------------------------------------|
| 1          | Read coil status          | 6 bytes                                             | 3+(3 <sup>rd</sup> ) bytes*                        |
| 3          | Read holding reisters     | 6 bytes                                             | 3 + (3 <sup>rd</sup> ) bytes*                      |
| 5          | Force single coil         | 6 bytes                                             | 6 bytes                                            |
| 6          | Preset single register    | 6 bytes                                             | 6 bytes                                            |
| 8          | Diagnostics               | 6 bytes                                             | 6 bytes                                            |
| 15         | Force multiple coils      | 7 + (7 <sup>th</sup> ) bytes*                       | 6 bytes                                            |
| 16         | Preset multiple registers | 7 + (7 <sup>th</sup> ) bytes*                       | 6 bytes                                            |
| 128 to 255 | Exception function        | Unused                                              | 3 bytes                                            |

 $^{\star}$   $~7^{th},~3^{rd}\!:$  The  $7^{th}$  and 3  $^{rd}$  byte count values stored in the frame.

# CHAPTER 4 FUJI GENERAL-PURPOSE INVERTER PROTOCOL

This chapter describes the Fuji general-purpose inverter protocol, a common protocol to Fuji general-purpose inverters, as well as the host side procedure to use this protocol and error processing.

#### Table of Contents


| 4.1 | Mes | sages                                                                |      |
|-----|-----|----------------------------------------------------------------------|------|
| 4.1 | .1  | Message formats                                                      | 4-1  |
| 4.1 | .2  | Transmission frames                                                  |      |
| 4.1 | .3  | Descriptions of fields                                               | 4-10 |
| 4.1 | .4  | Communications examples                                              | 4-12 |
| 4.2 | Hos | t Side Procedures                                                    | 4-14 |
| 4.2 | 2.1 | Inverter's response time                                             | 4-14 |
| 4.2 | 2.2 | Timeout processing                                                   | 4-15 |
| 4.2 | 2.3 | Receiving preparation complete time and message timing from the host | 4-15 |
| 4.3 | Con | nmunications Errors                                                  | 4-16 |
| 4.3 | 3.1 | Categories of communications errors                                  | 4-16 |
| 4.3 | 8.2 | Operations in case of communications errors                          | 4-17 |
|     |     |                                                                      |      |

## 4.1 Messages

## 4.1.1 Message formats

The polling/selecting system is used to transmit and receive messages. The inverter always waits for selecting (write requests) or polling (read requests) from a host such as a personal computer or PLC.

When the inverter in the standby status receives a request frame from the host addressed to itself (local station) and considers the request frame to have been normally received, the inverter executes the transaction in response to the request, and sends back an acknowledgement (ACK) frame (or response and data in the case of polling). If the inverter judges that the receiving failed, it returns negative acknowledgment (NAK) frame. In the case of broadcast (all station batch selecting), the inverter does not send back response.



(Each frame is described in "4.1.2 Transmission frames.")

#### Broadcast (all station batch selecting)

A frame with the station address set to 99 is treated by all inverters as broadcast.

By using broadcast, operation or frequency commands can be simultaneously assigned to all inverters.

In broadcast communications, only selecting of S01, S05, S06, S13, and S14 in the standard frame, and commands (W, E, a, e, f, and m) in the optional frame are valid.

## 4.1.2 Transmission frames

Transmission frames are classified into two types; standard fames with which all communications functions are available, and optional frames, allowing high-speed communications, but whose function is limited to issuing commands to and monitoring the inverter.

All characters (including BCC) comprising both standard and optional frames are represented by ASCII codes. The lengths of standard and optional frames are as shown in Table 4.1 below:

| Fra            | ame type  |          | Frame length |
|----------------|-----------|----------|--------------|
| Standard frame | Selecting | Request  | 16 bytes     |
|                |           | Response | 16 bytes     |
|                | Polling   | Request  | 16 bytes     |
|                |           | Response | 16 bytes     |
| Optional frame | Selecting | Request  | 12 bytes     |
|                |           | Response | 8 bytes      |
|                | Polling   | Request  | 8 bytes      |
|                |           | Response | 12 bytes     |

| Table 4.1 | Lengths | of transmission | frames |
|-----------|---------|-----------------|--------|
|           |         |                 |        |

#### [1] Standard frame

Standard frames are classified into request frame, ACK frame, and NAK frame, and their frame configurations are as shown below.

For the meanings of the fields comprising each frame, see the tables shown on the pages that follow.

#### Request frame [host $\Rightarrow$ inverter]

| 0   | 12      | 3   | 4       | 5          | 6        | 7      | 8  | 9 | 12  | 13  | 14 15  |
|-----|---------|-----|---------|------------|----------|--------|----|---|-----|-----|--------|
| SOH | Station | ENQ | Command | Function   | Functio  | n code | SP | D | ata | ETX | BCC    |
|     | address |     |         | code group | identifi | cation |    |   |     |     |        |
|     |         |     |         | -          | num      | ber    |    |   |     |     |        |
| 1   | 2       | 1   | 1       | 1          | 2        |        | 1  |   | 4   | 1   | 2      |
|     |         |     |         |            |          |        |    |   |     |     | (byte) |
|     | For BCC |     |         |            |          |        |    |   |     |     |        |

#### ACK frame [inverter $\Rightarrow$ host]

| 0   | 12                 | 3   | 4       | 5                   | 6                          | 7      | 8  | 9 | 12  | 13  | 14 15       |
|-----|--------------------|-----|---------|---------------------|----------------------------|--------|----|---|-----|-----|-------------|
| SOH | Station<br>address | ACK | Command | Function code group | Functic<br>identifi<br>num | cation | SP | D | ata | ETX | BCC         |
| 1   | 2<br><             | 1   | 1       | 1                   | 2<br>For BCC               | 2      | 1  |   | 4   | 1   | 2<br>(byte) |

#### NAK frame [inverter $\Rightarrow$ host]

| 0   | 12                 | 3   | 4       | 5                   | 6 7                                   | 8 | 9   | 12 | 13  | 14 15       |
|-----|--------------------|-----|---------|---------------------|---------------------------------------|---|-----|----|-----|-------------|
| SOH | Station<br>address | NAK | Command | Function code group | Function co<br>identificati<br>number |   | Dat | ta | ETX | BCC         |
| 1   | 2                  | 1   | 1       | 1                   | 2                                     | 1 | 4   |    | 1   | 2<br>(byte) |
|     | For BCC            |     |         |                     |                                       |   |     |    |     |             |

|      |                             | V                                                        | alue                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                             |  |
|------|-----------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Byte | Field                       | ASCII<br>format                                          | Hexadecimal format                                                                                                                                                                                                               | Description                                                                                                                                                                                                                                                                                 |  |
| 0    | SOH                         | SOH                                                      | 01 <sub>H</sub>                                                                                                                                                                                                                  | Start of message                                                                                                                                                                                                                                                                            |  |
| 1    | Station<br>address          | 0 to 3, 9                                                | 30 <sub>н</sub> to 33 <sub>н</sub><br>39 <sub>н</sub>                                                                                                                                                                            | Station address of the inverter (decimal: ten's figure)                                                                                                                                                                                                                                     |  |
| 2    |                             | 0 to 9                                                   | 30 <sub>H</sub> to 39 <sub>H</sub>                                                                                                                                                                                               | Station address of the inverter (decimal: one's figure)                                                                                                                                                                                                                                     |  |
| 3    | ENQ                         | ENQ                                                      | 05 <sub>Н</sub>                                                                                                                                                                                                                  | Transmission request                                                                                                                                                                                                                                                                        |  |
| 4    | Command                     | R<br>W<br>A<br>E                                         | 52 <sub>н</sub><br>57 <sub>н</sub><br>41 <sub>н</sub><br>45 <sub>н</sub>                                                                                                                                                         | Request command<br>Polling (read)<br>Selecting (write)<br>High-speed response selecting (write) *2<br>Alarm reset                                                                                                                                                                           |  |
| 5    | Function<br>code group *1   | F<br>E<br>C<br>P<br>H<br>J<br>y<br>s<br>M<br>W<br>X<br>Z | 46 <sub>н</sub><br>45 <sub>н</sub><br>43 <sub>н</sub><br>50 <sub>н</sub><br>48 <sub>н</sub><br>4A <sub>н</sub><br>59 <sub>н</sub><br>53 <sub>н</sub><br>4D <sub>н</sub><br>57 <sub>н</sub><br>58 <sub>н</sub><br>5А <sub>н</sub> | Function code group *3<br>Fundamental function<br>Extension terminal function<br>Control function of frequency<br>Motor parameter<br>High performance function<br>Application function<br>Link function<br>Command data<br>Monitor data 1<br>Monitor data 2<br>Alarm data 1<br>Alarm data 2 |  |
| 6    | Function<br>code            | 0 to 9                                                   | 30 <sub>н</sub> to 39 <sub>н</sub>                                                                                                                                                                                               | Function code identification number (decimal: ten's figure)                                                                                                                                                                                                                                 |  |
| 7    | identification<br>number *1 | 0 to 9                                                   | 30 <sub>H</sub> to 39 <sub>H</sub>                                                                                                                                                                                               | Function code identification number (decimal: one's figure)                                                                                                                                                                                                                                 |  |
| 8    | Special additional data     | SP                                                       | 20 <sub>H</sub>                                                                                                                                                                                                                  | Unused (space fixed)                                                                                                                                                                                                                                                                        |  |
| 9    | Data                        | 0 to F                                                   | 30 <sub>H</sub> to 3F <sub>H</sub>                                                                                                                                                                                               | Data's first character (hexadecimal: thousand's figure)                                                                                                                                                                                                                                     |  |
| 10   |                             | 0 to F                                                   | $30_{H}$ to $3F_{H}$                                                                                                                                                                                                             | Data's second character (hexadecimal: hundred's figure)                                                                                                                                                                                                                                     |  |
| 11   |                             | 0 to F                                                   | $30_{H}$ to $3F_{H}$                                                                                                                                                                                                             | Data's third character (hexadecimal: ten's figure)                                                                                                                                                                                                                                          |  |
| 12   |                             | 0 to F                                                   | $30_{H}$ to $3F_{H}$                                                                                                                                                                                                             | Data's fourth character (hexadecimal: one's figure)                                                                                                                                                                                                                                         |  |
| 13   | ETX                         | ETX                                                      | 03 <sub>H</sub>                                                                                                                                                                                                                  | End of message                                                                                                                                                                                                                                                                              |  |
| 14   | BCC                         | 0 to F                                                   | $30_{H}$ to $3F_{H}$                                                                                                                                                                                                             | Checksum 1 (hexadecimal: ten's figure)                                                                                                                                                                                                                                                      |  |
| 15   |                             | 0 to F                                                   | $30_{H}$ to $3F_{H}$                                                                                                                                                                                                             | Checksum 2 (hexadecimal: one's figure)                                                                                                                                                                                                                                                      |  |

Table 4.2 Request frame

\*1 A space (SP =  $20_H$ ) will be set for an alarm reset command.

\*2 Use high-speed response selecting to read the monitor when a command, which takes time for selecting (see Table 4.12 in "4.2 Host Side Procedures"), is written. The inverter does not respond to the regular write command W until writing is completed. With regard to high-speed response command A, the inverter sends back response upon receipt of a write request and communications can, therefore, continue even during writing. To confirm whether writing is completed in this case, read the BUSY flag (M14: 15 bits). If additional writing is performed during writing, NAK (error during writing) will result.

- \*3 Function codes are divided into function codes that can be edited from the keypad of the inverter, and communications dedicated function codes.
  - 1) Function codes editable from the keypad

| Fundamental function:          | F code |
|--------------------------------|--------|
| Extension terminal function:   | E code |
| Control function of frequency: | C code |
| Motor parameter:               | P code |
| High performance function:     | H code |
| Application function:          | J code |
| Link function:                 | y code |

For further information about these codes, see "2.4 Making RS485-related settings" in Chapter 2 of this manual, and "Chapter 9 Function Codes" of the FRENIC-Mini User's Manual (MEH446) or FRENIC-Eco User's Manual (MEH456)

2) Communications dedicated function codes

| Command data:   | S code |
|-----------------|--------|
| Monitor data 1: | M code |
| Monitor data 2: | W code |
| Alarm data 1:   | X code |
| Alarm data 2:   | Z code |

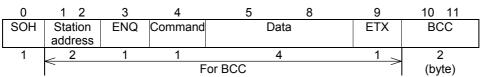
For further information about these codes, see "Chapter 5 Function Codes and Data Formats."

|      |                               | Value                                                    |                                                                                  |                                                                                                                                                                                                                                                                                          |  |
|------|-------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Byte | Field                         | ASCII<br>format                                          | Hexadecimal<br>format                                                            | Description                                                                                                                                                                                                                                                                              |  |
| 0    | SOH                           | SOH                                                      | 01 <sub>H</sub>                                                                  | Start of message                                                                                                                                                                                                                                                                         |  |
| 1    | Station                       | 0 to 3                                                   | $30_{H}$ to $33_{H}$                                                             | Station address of the inverter (decimal: ten's figure)                                                                                                                                                                                                                                  |  |
| 2    | address                       | 0 to 9                                                   | $30_{H}$ to $39_{H}$                                                             | Station address of the inverter (decimal: one's figure)                                                                                                                                                                                                                                  |  |
| 3    | ACK                           | ACK                                                      | 06 <sub>H</sub>                                                                  | Transmission response<br>Acknowledgement: There was no receiving or logical<br>error.                                                                                                                                                                                                    |  |
| 4    | Command                       | R<br>W<br>A<br>E                                         | 52 <sub>н</sub><br>57 <sub>н</sub><br>41 <sub>н</sub><br>45 <sub>н</sub>         | Answerback of request command<br>Polling (read)<br>Selecting (write)<br>High-speed response selecting (write)<br>Alarm reset                                                                                                                                                             |  |
| 5    | Function code<br>group *1     | F<br>E<br>C<br>P<br>H<br>J<br>y<br>S<br>M<br>W<br>X<br>Z | 46н<br>45н<br>43н<br>50н<br>48н<br>4Ан<br>59н<br>53н<br>4Dн<br>57н<br>58н<br>5Ан | Function code group<br>Fundamental function<br>Extension terminal function<br>Control function of frequency<br>Motor parameter<br>High performance function<br>Application function<br>Link function<br>Command data<br>Monitor data 1<br>Monitor data 2<br>Alarm data 1<br>Alarm data 2 |  |
| 6    | Function code identification  | 0 to 9                                                   | 30 <sub>H</sub> to 39 <sub>H</sub>                                               | Function code identification number (decimal: ten's figure)                                                                                                                                                                                                                              |  |
| 7    | number *1                     | 0 to 9                                                   | 30 <sub>H</sub> to 39 <sub>H</sub>                                               | Function code identification number (decimal: one's figure)                                                                                                                                                                                                                              |  |
| 8    | Special<br>additional<br>data | SP<br>-                                                  | 20 <sub>Н</sub><br>2D <sub>Н</sub>                                               | Fixed to "sp (space)" normally.<br>"-" for negative data                                                                                                                                                                                                                                 |  |
| 9    | Data                          | 0 to F                                                   | $30_{H}$ to $3F_{H}$                                                             | Data's first character (hexadecimal: thousand's figure)                                                                                                                                                                                                                                  |  |
| 10   |                               | 0 to F                                                   | $30_{H}$ to $3F_{H}$                                                             | Data's second character (hexadecimal: hundred's figure)                                                                                                                                                                                                                                  |  |
| 11   |                               | 0 to F                                                   | $30_H$ to $3F_H$                                                                 | Data's third character (hexadecimal: ten's figure)                                                                                                                                                                                                                                       |  |
| 12   |                               | 0 to F                                                   | $30_{H}$ to $3F_{H}$                                                             | Data's fourth character (hexadecimal: one's figure)                                                                                                                                                                                                                                      |  |
| 13   | ETX                           | ETX                                                      | 03 <sub>H</sub>                                                                  | End of message                                                                                                                                                                                                                                                                           |  |
| 14   | BCC                           | 0 to F                                                   | $30_{H}$ to $3F_{H}$                                                             | Checksum 1 (hexadecimal: ten's figure)                                                                                                                                                                                                                                                   |  |
| 15   |                               | 0 to F                                                   | $30_{H}$ to $3F_{H}$                                                             | Checksum 2 (hexadecimal: one's figure)                                                                                                                                                                                                                                                   |  |

Table 4.3 ACK frame

\*1 A space (SP =  $20_H$ ) will be set for an alarm reset command.

| Byte | Field                         | ASCII<br>format         | Value<br>Hexadecimal<br>format                                                   | Description                                                                                                                                                                                                                                                                              |  |
|------|-------------------------------|-------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0    | SOH                           | SOH                     | 01 <sub>H</sub>                                                                  | Start of message                                                                                                                                                                                                                                                                         |  |
| 1    | Station                       | 0 to 3                  | 30 <sub>H</sub> to 33 <sub>H</sub>                                               | Station address of the inverter (decimal: ten's figure)                                                                                                                                                                                                                                  |  |
| 2    | address                       | 0 to 9                  | 30 <sub>н</sub> to 39 <sub>н</sub>                                               | Station address of the inverter (decimal: one's figure)                                                                                                                                                                                                                                  |  |
| 3    | NAK                           | NAK                     | 15 <sub>H</sub>                                                                  | Transmission response<br>Negative acknowledgement: There was a logical error in<br>the request.                                                                                                                                                                                          |  |
| 4    | Command *1                    | R<br>W<br>A<br>E        | 52 <sub>н</sub><br>57 <sub>н</sub><br>41 <sub>н</sub><br>45 <sub>н</sub>         | Answerback of request command<br>Polling (read)<br>Selecting (write)<br>High-speed response selecting (write)<br>Alarm reset                                                                                                                                                             |  |
| 5    | Function code<br>group *1     | F E C P H J y S M W X Z | 46н<br>45н<br>43н<br>50н<br>48н<br>4Ан<br>59н<br>53н<br>4Dн<br>57н<br>58н<br>5Ан | Function code group<br>Fundamental function<br>Extension terminal function<br>Control function of frequency<br>Motor parameter<br>High performance function<br>Application function<br>Link function<br>Command data<br>Monitor data 1<br>Monitor data 2<br>Alarm data 1<br>Alarm data 2 |  |
| 6    | Function code identification  | 0 to 9                  | 30 <sub>H</sub> to 39 <sub>H</sub>                                               | Function code identification number (decimal: ten's figure)                                                                                                                                                                                                                              |  |
| 7    | number *1                     | 0 to 9                  | 30 <sub>H</sub> to 39 <sub>H</sub>                                               | Function code identification number (decimal: one's figure)                                                                                                                                                                                                                              |  |
| 8    | Special<br>additional<br>data | SP                      | 20 <sub>H</sub>                                                                  | Unused (space fixed)                                                                                                                                                                                                                                                                     |  |
| 9    | Data                          | SP                      | 20 <sub>H</sub>                                                                  | Unused (space fixed)                                                                                                                                                                                                                                                                     |  |
| 10   |                               | SP                      | 20 <sub>H</sub>                                                                  | Unused (space fixed)                                                                                                                                                                                                                                                                     |  |
| 11   |                               | 0 to F                  | $30_{H}$ to $3F_{H}$                                                             | Communications error code higher order (hexadecimal: ten's figure)                                                                                                                                                                                                                       |  |
| 12   |                               | 0 to F                  | $30_{H}$ to $3F_{H}$                                                             | Communications error code lower order (hexadecimal: one's figure)                                                                                                                                                                                                                        |  |
| 13   | ETX                           | ETX                     | 03 <sub>H</sub>                                                                  | End of message                                                                                                                                                                                                                                                                           |  |
| 14   | BCC                           | 0 to F                  | $30_{H}$ to $3F_{H}$                                                             | Checksum 1 (hexadecimal: ten's figure)                                                                                                                                                                                                                                                   |  |
| 15   |                               | 0 to F                  | $30_{H}$ to $3F_{H}$                                                             | Checksum 2 (hexadecimal: one's figure)                                                                                                                                                                                                                                                   |  |


Table 4.4 NAK frame

\*1 A space (SP =  $20_H$ ) will be set for a transmission format or transmission command error.

## [2] Optional frame

This section describes the structure and meaning of each optional frame.

#### Selecting request frame [host $\Rightarrow$ inverter]



|      |                         | Val              | ue                                                                       |                                                                                                                                           |  |
|------|-------------------------|------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|
| Byte | Byte Field ASCII format |                  | Hexadecimal<br>format                                                    | Description                                                                                                                               |  |
| 0    | SOH                     | SOH              | 01 <sub>H</sub>                                                          | Start of message                                                                                                                          |  |
| 1    | Station<br>address      | 0 to 3, 9        | 30 <sub>H</sub> to 33 <sub>H</sub><br>39 <sub>H</sub>                    | Station address of the inverter (decimal: ten's figure)                                                                                   |  |
| 2    |                         | 0 to 9           | 30 <sub>H</sub> to 39 <sub>H</sub>                                       | Station address of the inverter (decimal: one's figure)                                                                                   |  |
| 3    | ENQ                     | ENQ              | 05 <sub>Н</sub>                                                          | Transmission request                                                                                                                      |  |
| 4    | Command                 | a<br>e<br>f<br>m | 61 <sub>н</sub><br>65 <sub>н</sub><br>66 <sub>н</sub><br>6D <sub>н</sub> | Request command<br>Speed setting (S01)<br>Frequency command (S05)<br>Operation command (S06)<br>Reset command (The data part is all zero) |  |
| 5    | Data                    | 0 to F           | $30_H$ to $3F_H$                                                         | Data's first character (hexadecimal: thousand's figure)                                                                                   |  |
| 6    |                         | 0 to F           | $30_{H}$ to $3F_{H}$                                                     | Data's second character (hexadecimal: hundred's figure)                                                                                   |  |
| 7    |                         | 0 to F           | $30_H$ to $3F_H$                                                         | Data's third character (hexadecimal: ten's figure)                                                                                        |  |
| 8    |                         | 0 to F           | $30_H$ to $3F_H$                                                         | Data's fourth character (hexadecimal: one's figure)                                                                                       |  |
| 9    | ETX                     | ETX              | 03 <sub>H</sub>                                                          | End of message                                                                                                                            |  |
| 10   | BCC                     | 0 to F           | $30_H$ to $3F_H$                                                         | Checksum 1 (hexadecimal: ten's figure)                                                                                                    |  |
| 11   |                         | 0 to F           | $30_{H}$ to $3F_{H}$                                                     | Checksum 2 (hexadecimal: one's figure)                                                                                                    |  |

| Table 4.5 | Selecting request frame |
|-----------|-------------------------|
|-----------|-------------------------|

#### Selecting response frame [inverter $\Rightarrow$ host]

| 0   | 1 2     | 3       | 4       | 5   | 67  |
|-----|---------|---------|---------|-----|-----|
| SOH | Station | ACK/NAK | Command | ETX | BCC |
|     | address |         |         |     |     |
| 1   | 2       | 1       | 1       | 1   | 2   |
|     |         | (byte)  |         |     |     |

Table 4.6 Selecting response frame

| ω    |         | ١      | /alue                              |                                                                    |
|------|---------|--------|------------------------------------|--------------------------------------------------------------------|
| Byte | Field   | ASCII  | Hexadecimal                        | Description                                                        |
| _    |         | format | format                             |                                                                    |
| 0    | SOH     | SOH    | 01 <sub>Н</sub>                    | Start of message                                                   |
| 1    | Station | 0 to 3 | $30_{H}$ to $33_{H}$               | Station address of the inverter (decimal: ten's figure)            |
| 2    | address | 0 to 9 | 30 <sub>H</sub> to 39 <sub>H</sub> | Station address of the inverter (decimal: one's figure)            |
| 3    | ACK/NAK |        |                                    | Transmission response                                              |
|      |         | ACK    | 06 <sub>н</sub>                    | Acknowledgement: There was no receiving or logical                 |
|      |         | NAK    | 15 <sub>H</sub>                    | error.<br>Negetive acknowledgment: There was a legical error in    |
|      |         | INAN   | IOH                                | Negative acknowledgment: There was a logical error in the request. |
| 4    | Command |        |                                    | Request command                                                    |
|      |         | а      | 61 <sub>Н</sub>                    | Speed setting (S01)                                                |
|      |         | е      | 65 <sub>Н</sub>                    | Frequency command (S05)                                            |
|      |         | f      | 66 <sub>H</sub>                    | Operation command (S06)                                            |
|      |         | m      | 6D <sub>H</sub>                    | Reset command                                                      |
| 5    | ETX     | ETX    | 03 <sub>H</sub>                    | End of message                                                     |
| 6    | BCC     | 0 to F | $30_H$ to $3F_H$                   | Checksum 1 (hexadecimal: ten's figure)                             |
| 7    |         | 0 to F | $30_{H}$ to $3F_{H}$               | Checksum 2 (hexadecimal: one's figure)                             |

Polling request frame [host  $\Rightarrow$  inverter]

| 0   | 12      | 3      | 4       | 5   | 67  |
|-----|---------|--------|---------|-----|-----|
| SOH | Station | ENQ    | Command | ETX | BCC |
|     | address |        |         |     |     |
| 1   | _ 2     | 1      | 1       | 1   | 2   |
|     | <       | (byte) |         |     |     |

Table 4.7 Polling request frame

| a    |         | V      | alue                 |                                                         |
|------|---------|--------|----------------------|---------------------------------------------------------|
| Byte | Field   | ASCII  | Hexadecimal          | Description                                             |
| ш    |         | format | format               |                                                         |
| 0    | SOH     | SOH    | 01 <sub>H</sub>      | Start of message                                        |
| 1    | Station | 0 to 3 | $30_{H}$ to $33_{H}$ | Station address of the inverter (decimal: ten's figure) |
| 2    | address | 0 to 9 | $30_{H}$ to $39_{H}$ | Station address of the inverter (decimal: one's figure) |
| 3    | ENQ     | ENQ    | 05 <sub>H</sub>      | Transmission request                                    |
| 4    | Command |        |                      | Request command                                         |
|      |         | g      | 67 <sub>Н</sub>      | Actual frequency, actual speed (M06)                    |
|      |         | j      | 6A <sub>H</sub>      | Output frequency monitor (M09)                          |
|      |         | k      | 6B <sub>Н</sub>      | Operation status monitor (M14)                          |
|      |         | h      | 68 <sub>Н</sub>      | Torque monitor (M07) (not supported by                  |
|      |         |        |                      | FRENIC-Mini)                                            |
| 5    | ETX     | ETX    | 03 <sub>H</sub>      | End of message                                          |
| 6    | BCC     | 0 to F | $30_H$ to $3F_H$     | Checksum 1 (hexadecimal: ten's figure)                  |
| 7    |         | 0 to F | $30_{H}$ to $3F_{H}$ | Checksum 2 (hexadecimal: one's figure)                  |

#### Polling response frame [inverter $\Rightarrow$ host]

| 0   | 1 2     | 3       | 4       | 5  | 8  | 9   | 10 11  |
|-----|---------|---------|---------|----|----|-----|--------|
| SOH | Station | ACK/NAK | Command | Da | ta | ETX | BCC    |
|     | address |         |         |    |    |     |        |
| 1   | 2       | 1       | 1       | 4  |    | 1   | 2      |
|     |         |         | For BC  | С  |    | /   | (byte) |

|      |         | Value            |                                                              |                                                                                                                                                                                       |
|------|---------|------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Byte | Field   | ASCII<br>format  | Hexadecimal format                                           | Description                                                                                                                                                                           |
| 0    | SOH     | SOH              | 01 <sub>H</sub>                                              | Start of message                                                                                                                                                                      |
| 1    | Station | 0 to 3           | $30_{\text{H}}$ to $33_{\text{H}}$                           | Station address of the inverter (decimal: ten's figure)                                                                                                                               |
| 2    | address | 0 to 9           | $30_{\text{H}}$ to $39_{\text{H}}$                           | Station address of the inverter (decimal: one's figure)                                                                                                                               |
| 3    | ACK/NAK | ACK<br>NAK       | 06 <sub>н</sub><br>15 <sub>н</sub>                           | Transmission request<br>Acknowledgement: There was no receiving or logical<br>error.<br>Negative acknowledgment: There was a logical error in<br>the request.                         |
| 4    | Command | g<br>j<br>k<br>h | 67 <sub>Н</sub><br>6А <sub>Н</sub><br>6Вн<br>68 <sub>Н</sub> | Request command<br>Actual frequency, actual speed (M06)<br>Output frequency monitor (M09)<br>Operation status monitor (M14)<br>Torque monitor (M07) (not supported by<br>FRENIC-Mini) |
| 5    | Data    | 0 to F           | $30_{H}$ to $3F_{H}$                                         | Data's first character (hexadecimal: thousand's figure)                                                                                                                               |
| 6    |         | 0 to F           | $30_{H}$ to $3F_{H}$                                         | Data's second character (hexadecimal: hundred's figure)                                                                                                                               |
| 7    |         | 0 to F           | $30_{H}$ to $3F_{H}$                                         | Data's third character (hexadecimal: ten's figure)                                                                                                                                    |
| 8    |         | 0 to F           | $30_{H}$ to $3F_{H}$                                         | Data's fourth character (hexadecimal: one's figure)                                                                                                                                   |
| 9    | ETX     | ETX              | 03 <sub>H</sub>                                              | End of message                                                                                                                                                                        |
| 10   | BCC     | 0 to F           | $30_{H}$ to $3F_{H}$                                         | Checksum 1 (hexadecimal: ten's figure)                                                                                                                                                |
| 11   |         | 0 to F           | $30_{H}$ to $3F_{H}$                                         | Checksum 2 (hexadecimal: one's figure)                                                                                                                                                |

Table 4.8 Polling response frame

### [3] NAK frame

When the response frame length is determined by the command type and the command type character is correctly identified, response will be given according to the frame length specified by the command in principle.

| No. | Frame/<br>Command type            | Cause of error                                                                                          | NAK response frame                | Error code (M26)   |
|-----|-----------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------|
| 1   | Standard frame<br>Optional frame  | The ENQ was not detected in the specified position.                                                     | Standard fame<br>(16 bytes long)  | Format error [74]  |
| 2   | Selecting command<br>(a, e, f, m) | The ETX was not detected in the specified position.                                                     | Optional frame<br>(8 bytes long)  | Format error [74]  |
| 3   | Polling command<br>(g, j, k, h)   | The ETX was not detected in the specified position.                                                     | Optional frame<br>(12 bytes long) | Format error [74]  |
| 4   | Other than specified commands     | A command other than the<br>specified commands (R, W,<br>A, E, a, e, f, g, j, k, h, m)<br>was detected. | Standard frame<br>(16 bytes long) | Command error [75] |

Table 4.9 Negative acknowledgment (NAK) frame

(CAUTION When negative acknowledgement (NAK) for a format or command error is returned with the standard format as in the case of No. 1 and No. 4, the contents of the command type, function code group, and function code identification number fields will be undefined.

#### 4.1.3 **Descriptions of fields**

#### [1] Command field

The table below shows command types. The applicable frame is different among the command types.

| Command | Description                                                                                       | Applicable frame |
|---------|---------------------------------------------------------------------------------------------------|------------------|
| ASCII R | Reads function code data (polling).                                                               | Standard frame   |
| ASCII W | Writes function code data (selecting).                                                            |                  |
| ASCII A | Writes function code data at high speed (writing that does not wait for writing to be completed). |                  |
| ASCII E | Resets an alarm.                                                                                  |                  |
| ASCII a | Gives a frequency command (S01). *1                                                               | Optional frame   |
| ASCII e | Gives a frequency command (S05). *1                                                               |                  |
| ASCII f | Gives an operation command (S06). *1                                                              |                  |
| ASCII g | Reads the output frequency (M06). *1                                                              |                  |
| ACCII h | Reads the torque monitor (M07). *1<br>(not supported by FRENIC-Mini)                              |                  |
| ASCII j | Reads the output frequency (M09). *1                                                              |                  |
| ASCII k | Reads the operation status monitor (M14). *1                                                      |                  |
| ASCII m | Resets an alarm.                                                                                  |                  |

\*1 The above commands "a" to "k" are used to read or write data in the function code data format specified in parentheses.

#### [2] Data field

#### **Standard frame**

| 8                  | 9            | 10            | 11           | 12            |
|--------------------|--------------|---------------|--------------|---------------|
| Special additional | Data's first | Data's second | Data's third | Data's fourth |
| data               | character    | character     | character    | character     |

#### **Optional frame**

| 9            | 10            | 11           | 12            |
|--------------|---------------|--------------|---------------|
| Data's first | Data's second | Data's third | Data's fourth |
| character    | character     | character    | character     |

All data, except for some special ones, are treated as 16 bits long. In the data field of the communications frame, data is hexadecimal (0000<sub>H</sub> - FFF<sub>H</sub>), and each digit is represented by an ASCII code. Negative integer data (signed data) is treated as a complement of 2 of the integer data without the sign.

(CAUTION - The alphabetic characters A to F of hexadecimal data must be uppercase.

- Set 0 in all the data fields of the request frame for polling.
- In selecting, the data field of the ACK frame will be undefined.

(Example) When setting 20Hz with function code S01 (speed setting 1) (maximum output frequency = 60Hz)

1) Calculate the set value according to the data format of S01 (±20000/maximum output frequency).

```
Data = 20Hz x \pm 20000/60Hz (+ for forward rotation, – for reverse rotation)
=\pm 6666.6
\approx \pm 6667
```

2) Convert the data into hexadecimal (a complement of 2 in the case of negative data).

```
Data = 6667 ..... (forward rotation)
```

```
=1A0B<sub>H</sub>
Data = -6667 ...... (reverse rotation)
= 0 - 6667
```

Thus,

65536 - 6667 = 58869 = E5F5<sub>H</sub>

3) Set the data.

| Position                | Set value (forward rotation) | Set value (reverse rotation) |
|-------------------------|------------------------------|------------------------------|
| Data's first character  | ASCII 1                      | ASCII E                      |
| Data's second character | ASCII A                      | ASCII 5                      |
| Data's third character  | ASCII 0                      | ASCII F                      |
| Data's fourth character | ASCII B                      | ASCII 5                      |

#### [3] Checksum field

The data in this field is intended to check whether there is any error in the communications frame at the time of data transmission. Calculate the data by adding one byte to all fields, except for S0H and the checksum field, treating the last byte of the result as a two-digit hexadecimal value, and converting each digit into an ASCII code.

(Example) When the result of addition is  $0123_{H}$ 

| Position   | Set value (forward rotation) |
|------------|------------------------------|
| Checksum 1 | ASCII 2                      |
| Checksum 2 | ASCII 3                      |

## 4.1.4 Communications examples

Typical communications examples are shown below (the station number is 12 in all cases):

#### [1] Standard frame

#### (Example 1) Selecting S01: speed setting 1 (write)

10Hz command x 20,000/maximum output frequency 50Hz = 4000d = 0FA0<sub>H</sub>

#### Request frame (host $\Rightarrow$ inverter)

| SOH | 1 | 2 | ENQ | W | S | 0 | 1 | SP | 0 | F | А | 0 | ETX | 7 | D |
|-----|---|---|-----|---|---|---|---|----|---|---|---|---|-----|---|---|
|     |   |   |     |   |   |   |   |    |   |   |   |   |     |   |   |

# ACK frame (inverter ⇒ host)

|  | S | ОН | 1 | 2 | ACK | W | S | 0 | 1 | SP | 0 | F | А | 0 | ETX | 7 | Е |
|--|---|----|---|---|-----|---|---|---|---|----|---|---|---|---|-----|---|---|
|--|---|----|---|---|-----|---|---|---|---|----|---|---|---|---|-----|---|---|

#### NAK frame (inverter $\Rightarrow$ host) ... Link priority error

#### (Example 2) Polling of M09: output frequency (read)

#### Request frame (host ⇒ inverter)

| SOH                                     | 1 | 2 | ENQ | R | Μ | 0 | 9 | SP | 0 | 0 | 0 | 0 | ETX | 5 | 3 |
|-----------------------------------------|---|---|-----|---|---|---|---|----|---|---|---|---|-----|---|---|
| ACK frame (inverter $\Rightarrow$ host) |   |   |     |   |   |   |   |    |   |   |   |   |     |   |   |

|  |  | SOH | 1 | 2 | ACK | R | М | 0 | 9 | SP | 0 | В | В | 8 | ETX | 8 | 0 |
|--|--|-----|---|---|-----|---|---|---|---|----|---|---|---|---|-----|---|---|
|--|--|-----|---|---|-----|---|---|---|---|----|---|---|---|---|-----|---|---|

#### [2] Optional frame

#### (Example 1) Selecting of operation command (write)

#### **Request frame** (host ⇒ inverter) ... FWD command

| г |     |   |   |     |   |   |   |   |   |     | - |   |
|---|-----|---|---|-----|---|---|---|---|---|-----|---|---|
|   | SOH | 1 | 2 | ENQ | f | 0 | 0 | 0 | 1 | ETX | 9 | 2 |

ACK frame (inverter  $\Rightarrow$  host)

| SOH | 1 | 2 | ACK | f | ETX | D | 2 |
|-----|---|---|-----|---|-----|---|---|
|-----|---|---|-----|---|-----|---|---|

#### **NAK frame** (inverter $\Rightarrow$ host)

The cause of the error can be confirmed with function code M26 (transmission error transaction code).

| SOH | 1 | 2 | NAK | f | ETX | Е | 1 |
|-----|---|---|-----|---|-----|---|---|
|-----|---|---|-----|---|-----|---|---|

#### (Example 2) Selecting of operation command in broadcast (write)

#### Request frame (host ⇒ inverter) ... REV command

| SOH 9 9 ENQ | f 0 | 0 0 | 2 | ETX | А | 2 |
|-------------|-----|-----|---|-----|---|---|
|-------------|-----|-----|---|-----|---|---|

The inverter does not respond to broadcast.

|                | 00 <sub>H</sub> | 10 <sub>Н</sub> | 20 <sub>H</sub> | 30 <sub>Н</sub> | 40 <sub>H</sub> | 50 <sub>Н</sub> | 60 <sub>Н</sub> | 70 <sub>Н</sub> |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 0 <sub>H</sub> | NUL             | DLE             | SP              | 0               | @               | Р               | `               | р               |
| 1 <sub>H</sub> | SOH             | DC1             | !               | 1               | А               | Q               | а               | q               |
| 2 <sub>H</sub> | STX             | DC2             | "               | 2               | В               | R               | b               | r               |
| 3 <sub>Н</sub> | ETX             | DC3             | #               | 3               | С               | S               | С               | S               |
| 4 <sub>H</sub> | EOT             | DC4             | \$              | 4               | D               | Т               | d               | t               |
| 5 <sub>H</sub> | ENQ             | NAK             | %               | 5               | E               | U               | е               | u               |
| 6 <sub>Н</sub> | ACK             | SYN             | &               | 6               | F               | V               | f               | V               |
| 7 <sub>H</sub> | BEL             | ETB             | ć               | 7               | G               | W               | g               | W               |
| 8 <sub>H</sub> | BS              | CAN             | (               | 8               | Н               | Х               | h               | Х               |
| 9 <sub>H</sub> | HT              | EM              | )               | 9               | I               | Y               | i               | у               |
| A <sub>H</sub> | LF              | SUB             | *               | :               | J               | Z               | j               | Z               |
| Вн             | VT              | ESC             | +               | •               | К               | [               | k               | {               |
| Сн             | FF              | FS              | ,               | <               | L               | $\backslash$    | I               |                 |
| D <sub>H</sub> | CR              | GS              | -               | =               | М               | ]               | m               | }               |
| Ен             | SO              | RS              |                 | >               | Ν               | -               | n               | ~               |
| F <sub>H</sub> | SI              | US              | 1               | ?               | 0               | -               | 0               | DEL             |


Table 4.11 ASCII code table

The shaded codes are used for this communications protocol.

# 4.2 Host Side Procedures

## 4.2.1 Inverter's response time

Upon receipt of a query request from the host, the inverter executes the requested command, and sends back response after the response time shown below:

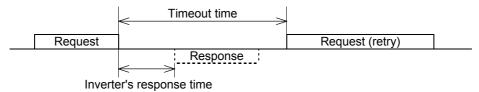


t1 + t2: Inverter's response time

t1: Response interval time (function code: y09)
 The time until the inverter starts to send response to the request from the host can be set. Setting the response interval time enables even the host side with a slow transaction execution speed to adjust timing.

- t2: Inverter's transaction timeThis is the time until the inverter executes the request and sends back response as shown inTable 4.12 below.
- t3: See "4.2.3 Receiving preparation complete time and message timing from the host."

| Command    | Transaction                              | Description                             | t2     | Timeout<br>time<br>(recommended) |
|------------|------------------------------------------|-----------------------------------------|--------|----------------------------------|
| R          | Function code read data                  |                                         | ≤10ms  | 0.1 sec                          |
| W          | Function code write data                 | S code commands other than S08 or S09   | ≤10ms  | 0.1 sec                          |
|            |                                          | H03 = 2: Motor parameter initialization | ≤500ms | 1.0 sec                          |
|            |                                          | H03 = 1: Data initialization            | ≤5s    | 10.0 sec                         |
|            |                                          | Function code other than above          | ≤100ms | 0.5 sec                          |
| A          | Function code data<br>high-speed writing |                                         | ≤10ms  | 0.1 sec                          |
| E, m       | Alarm reset                              |                                         | ≤10ms  | 0.1 sec                          |
| a, e, f    | Specific function code<br>write data     |                                         | ≤10ms  | 0.1 sec                          |
| g, h, j, k | Specific function code read data         |                                         | ≤10ms  | 0.1 sec                          |


| Table 4.12 | Inverter's transaction time |
|------------|-----------------------------|
|------------|-----------------------------|

## 4.2.2 Timeout processing

To read/write data from/to the host, transmit the next frame after confirming response. If response is not transmitted from the inverter for more than a specified period of time (timeout time), it is a timeout, and perform a retry. (If a retry begins before a timeout, the requested frame cannot be received properly.)

The timeout time must be set longer than the response time of the inverter. Table 4.12 above mentioned shows recommended timeout times when no response interval time is set.

In case of a timeout, retransmit the same frame or perform polling (M26) for reading details of an error to confirm whether the inverter sends back normal response. If normal response is returned, this indicates that some transient transmission error occurred due to noise or other reasons, and subsequent communications is normal. (However, if this phenomenon frequently occurs even when normal response is sent back, some problem may exist. Perform a close investigation.) In case of no response, perform another retry. If the number of retries exceeds the set value (generally about three times), there may be a problem with the hardware and the software for the host controller. Investigate and correct the cause.



# 4.2.3 Receiving preparation complete time and message timing from the host

The time from the return of response by the inverter to the completion of receiving preparation of the communications port (switching from transmission to receiving) is called a receiving preparation complete time.

Transmit the following messages after the receiving preparation complete time:

Receiving preparation complete time: 5ms or less

Message timing from the host (t3): t3 > 5ms

#### In the case of broadcast

Upon receipt of a request for a query message from the host by broadcast, the inverter executes the command and enters the receiving enabled status.

Transmit the next message from the host following broadcast after the transaction time (t2) of the inverter.



# 4.3 Communications Errors

# 4.3.1 Categories of communications errors

The communications-related errors the inverter detects are listed below:

Table 4.13 Communications errors detected by inverter

| Error<br>category                               | Error name                                                 | Description                                                                                                                                                                                                       | Error code<br>(M26)  |
|-------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Transmission<br>error                           | Checksum error                                             | The frame to the local station is found unmatched in checksum collation.                                                                                                                                          | 71(47 <sub>H</sub> ) |
|                                                 | Parity error                                               | The parity is unmatched.                                                                                                                                                                                          | 72(48 <sub>H</sub> ) |
|                                                 | Other errors                                               | Receiving errors other than the<br>abovementioned (framing error,<br>overrun error)                                                                                                                               | 73(49 <sub>H</sub> ) |
| Logical<br>error                                | Format error                                               | <ul> <li>The characters of the transmission<br/>request are incorrect.</li> <li>The last character of the message is<br/>not in the specified position.</li> </ul>                                                | 74(4A <sub>H</sub> ) |
|                                                 | Command error                                              | A command that does not exist was transmitted.                                                                                                                                                                    | 75(4B <sub>H</sub> ) |
|                                                 | Link priority error<br>(does not occur<br>for FRENIC-Mini) | A frequency command, PID<br>command, or change command of<br>the run command (writing request<br>to S01, S05, S06, and S13) are<br>sent through the communication<br>route other than that specified with<br>H30. | 76(4C <sub>н</sub> ) |
|                                                 | Function code<br>error                                     | A function code that does not exist was requested.                                                                                                                                                                | 78(4E <sub>H</sub> ) |
|                                                 | Write disabled<br>error                                    | <ul> <li>An attempt was made during<br/>operation to write the function code<br/>for write disabled or for write<br/>disabled during operation.</li> </ul>                                                        | 79(4F <sub>H</sub> ) |
|                                                 | Data error                                                 | The write data is beyond the writable range.                                                                                                                                                                      | 80(50 <sub>H</sub> ) |
|                                                 | Error during<br>writing                                    | An attempt was made to write<br>another function data during<br>function writing with command A.                                                                                                                  | 81(51 <sub>H</sub> ) |
| Communi-<br>cations<br>disconnec-<br>tion error | Communications<br>disconnection<br>error                   | The inverter did not receive a<br>normal frame addressed to local<br>station or to other stations within<br>the communications disconnection<br>detection time set with the function<br>code.                     | _                    |

#### Transmission error (error codes 71 to 73)

When a transmission error occurs eight straight times, it is handled as a communications error. However, the inverter does not return response in order to avoid overlapping of response from multiple inverters. The count of eight straight times will be cleared upon normal receipt of a frame to another station or to the local inverter (station) itself.

#### Logical error (error codes 74 to 81)

When a logical error is detected, a negative acknowledgment (NAK) frame reports it. For further information, see the NAK response of each frame.

#### **Communications disconnection error**

If the inverter in operation does not receive a normal frame to itself (local station) or to another station when it has received a normal frame more than once and is operating via communications (frequency command or operation command), this status is considered disconnected.

When a disconnection status is set and remains over the setting time of function code y08, y18 (communications disconnection detection time), it is treated as a communications error.

- 1) Communications disconnection detection time (y08, y18): 0 (without detection), 1 to 60 (seconds)
- 2) Condition to clear communications disconnection detection timer: It will be cleared in a status other than disconnection.

When it is necessary to take action against errors by factor, the factor can be identified by reading M26. (M26 stores the latest communications error codes.)

## 4.3.2 Operations in case of communications errors

Operations in case of a transmission or communications disconnection error are the same as those of the Modbus RTU protocol. See "3.3.2 Operations in case of errors" in Chapter 3 Modbus RTU Protocol.

# CHAPTER 5 FUNCTION CODES AND DATA FORMATS

This chapter describes communications dedicated function codes and the data formats of communications frames. FRENIC-Mini and FRENIC-Eco support different function codes. For details, see the description of each function code.

Table of Contents

| mmunications Dedicated Function Codes         |                                                                                                                                                                  |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| About communications dedicated function codes | 5-1                                                                                                                                                              |
| Command data                                  | 5-1                                                                                                                                                              |
| Monitor data                                  | 5-6                                                                                                                                                              |
| Information displayed on the keypad           | 5-10                                                                                                                                                             |
| ta Formats                                    | 5-18                                                                                                                                                             |
| List of data format numbers                   | 5-18                                                                                                                                                             |
| Data format specifications                    | 5-30                                                                                                                                                             |
| 1                                             | About communications dedicated function codes<br>Command data<br>Monitor data<br>Information displayed on the keypad<br>a Formats<br>List of data format numbers |

# 5.1 Communications Dedicated Function Codes

## 5.1.1 About communications dedicated function codes

Communications dedicated function codes are available to monitor the operation and status of the inverter via communications. They are classified into the groups shown in Table 5.1 below:

| Communications dedicated<br>function code group | Function                                                          |
|-------------------------------------------------|-------------------------------------------------------------------|
| S                                               | Command data                                                      |
| М                                               | Monitor data (for reading only)                                   |
| W                                               | Monitor data out of keypad display information (for reading only) |
| X                                               | Alarm information out of keypad display information               |
| Z                                               | (for reading only)                                                |

Table 5.1 Types of communications dedicated function codes

The sections that follow describe communications dedicated function codes of each group.

## 5.1.2 Command data

#### [1] Frequency and PID command data

| Table 5.2 Fund | ction codes for frequent | cy and PID command data |
|----------------|--------------------------|-------------------------|
|----------------|--------------------------|-------------------------|

| Code | Name                           | Function                                                                                       | Permissible setting<br>range                                  | Min. step | Unit | R/W * |
|------|--------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------|------|-------|
| S01  | Frequency<br>command<br>(p.u.) | Frequency command<br>via communications<br>(value based on the<br>maximum output<br>frequency) | -32768 to 32767<br>(±20,000 =<br>maximum output<br>frequency) | 1         | _    | R/W   |
| S05  | Frequency command              | Frequency command<br>from communications<br>(by 0.01Hz)                                        | 0.00 to 655.35                                                | 0.01      | Hz   | R/W   |
| S13  | PID<br>command                 | PID command from communications                                                                | -32768 to 32767<br>(±100% at<br>±20,000)                      | 1         | _    | R/W   |

\* R: Read only, W: Write only, R/W: Read/Write

- 1) When both S01 and S05 are set and S01 is not 0, the command of S01 has precedence over that of S05.
- 2) The actual operation specified by each command is limited by internal processing of the inverter. For example, a value over 20,000 can be written to S01, but the actual frequency is limited to the maximum output frequency or to the upper limit frequency set with another function code. (The FRENIC-Mini/Eco treats negative data of S13 as 0.)
- 3) When an attempt is made to read the command data shown here, the data previously directed by communications, not the command value for actual operation, will be read. (Obtain the latest command value by reading the M code.)
- 4) At S01, set a value based on ±20,000 as the maximum output frequency. For example, when the maximum output frequency is 60Hz, set 20,000 at S01 with a set frequency of 60Hz, or 10,000 with a set frequency of 30Hz.

#### [2] Operation command data

| Code | Name                   | Function                                                                                                                                                                                  | Permissible setting range                 | Min. step | Unit | R/W * |
|------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------|------|-------|
| S06  | Operation<br>command   | Operation command via<br>communications<br>(general-purpose input<br>terminal functions (X1 –<br>X5, XF (FWD), XR<br>(REV)) and<br>communications<br>dedicated command<br>(FWD, REV, RST) | 0000 <sub>H</sub> to<br>FFFF <sub>H</sub> | 1         | _    | R/W   |
| S14  | Alarm reset<br>command | Alarm reset command<br>via communications                                                                                                                                                 | 0 or 1                                    | 1         | -    | R/W   |

| Table 5.3 | Function codes for a | operation command data |
|-----------|----------------------|------------------------|

\* R: Read only; W: Write only; R/W: Read/Write

- 1) To make alarm resetting with S06, bit 15 must be set to 1 and then set back to 0. Alarm resetting is impossible unless the communications side is made valid by the settings of function codes H30 and y99 and the "LE" assigned terminal.
- 2) S14 does not require the operation described in 1) above, and writing 1 permits alarm resetting (because writing the value once turns ON the reset command that will be turned OFF after a specific period of time). This command is 0 whenever it is read, and is always valid, irrespective of function codes H30 and y99 and the status of the "LE" assigned terminal.
- X1 X5, XF (FWD), and XR (REV) operate according to the functions set with function codes E01 – E05, E98, and E99.
   General-purpose input terminals X4 and X5 and function codes E04 and E05 are not supported by FRENIC-Mini.
- 4) When giving operation command S06 via communications, the relation between S06 and the inverter terminal (external signal input) command is shown in Table 5.4 on the next page. The "Support" column of the table indicates whether each function is supported by the respective models or not. O indicates the function is supported, and × indicates the function is not supported.

# 

If alarm resetting is performed with the operation command (S06) uncleared, the inverter will start to operate just upon alarm resetting. Before alarm resetting, confirm that the operation command is cleared.

Otherwise, an accident may result.

|                     |                           | Functio                                    | n                                            | When                                   | Com                      | mand              | Su   | pport |
|---------------------|---------------------------|--------------------------------------------|----------------------------------------------|----------------------------------------|--------------------------|-------------------|------|-------|
| Туре                | Assign-<br>ment<br>number | Internal<br>operation<br>command<br>symbol | Name                                         | not<br>assigned<br>(positive<br>logic) | Com-<br>Munica-<br>tions | Terminal<br>block | Mini | Eco   |
|                     |                           | FWD                                        | Forward operation/stop<br>command            | -                                      |                          |                   | 0    | 0     |
| Fixed<br>function   | -                         | REV                                        | Reverse operation/stop                       | -                                      | Valid                    | Invalid           | 0    | 0     |
|                     |                           | RST                                        | Alarm reset                                  | -                                      |                          |                   | 0    | 0     |
|                     | 0                         | SS1                                        | Multistep frequency 1                        | OFF                                    |                          |                   | 0    | 0     |
|                     | 1                         | SS2                                        | Multistep frequency 2                        | OFF                                    |                          |                   | 0    | 0     |
|                     | 2                         | SS4                                        | Multistep frequency 4                        | OFF                                    | Valid                    | Invalid           | 0    | 0     |
|                     | 4                         | RT1                                        | Acceleration/Deceleratio<br>n time selection | OFF                                    |                          |                   | 0    | ×     |
|                     | 6                         | HLD                                        | 3-wire operation stop command                | OFF                                    | Invalid                  |                   | 0    | 0     |
|                     | 7                         | BX                                         | Coast-to-stop command                        | OFF                                    | Valid                    |                   | 0    | 0     |
|                     | 8                         | RST                                        | Alarm reset                                  | OFF                                    | valid                    |                   | 0    | 0     |
| General-<br>purpose | 9                         | THR                                        | Trip command (External fault)                | ON                                     | Invalid                  | Valid             | 0    | 0     |
| input               | 10                        | JOG                                        | Jogging operation                            | OFF                                    | Invalid                  |                   | 0    | ×     |
|                     | 11                        | Hz2/Hz1                                    | Frequency setting 2/1 switching command      | OFF                                    |                          |                   | 0    | 0     |
| X1                  | 13                        | DCBRK DC braking command OFF               | ×                                            | 0                                      |                          |                   |      |       |
| X2<br>X3            | 15                        | SW50                                       | Switching to commercial power supply (50Hz)  | OFF                                    | Valid                    | Invalid           | ×    | 0     |
| лз<br>Х4            | 16                        | SW60                                       | Switching to commercial power supply (60Hz)  | OFF                                    |                          |                   | ×    | 0     |
| X5                  | 17                        | UP                                         | UP command                                   | OFF                                    | Invalid                  | Valid             | ×    | 0     |
|                     | 18                        | DOWN                                       | DOWN command                                 | OFF                                    | invalia                  | Valid             | ×    | 0     |
| XF<br>(FWD)         | 19                        | WE-KP                                      | Write enable for keypad                      | ON                                     | Valid                    |                   | 0    | 0     |
| XR                  | 20                        | Hz/PID                                     | PID control cancel                           | OFF                                    |                          |                   | 0    | 0     |
| (REV)               | 21                        | IVS                                        | Normal/Inverse mode changeover               | OFF                                    | Valid                    | Invalid           | 0    | 0     |
|                     | 22                        | IL                                         | Interlock                                    | OFF                                    |                          |                   | ×    | 0     |
|                     | 24                        | IL                                         | Link operation enable                        | ON                                     | Invalid                  | Valid             | 0    | 0     |
|                     | 25                        | LE                                         | Universal DI                                 | OFF                                    |                          |                   | ×    | 0     |
|                     | 26                        | U-DI                                       | Start characteristic selection               | OFF                                    | Valid                    | Valid             | ×    | 0     |
|                     | 30                        | STOP                                       | Forced stop                                  | ON                                     |                          |                   | ×    | 0     |
|                     | 33                        | PID-RST                                    | PID<br>integration/differential<br>reset     | OFF                                    | Valid                    | Invalid           | 0    | 0     |

| Table 5.4 | Relation between operation  | command (S06) and inverter | terminal command (external signal input) |
|-----------|-----------------------------|----------------------------|------------------------------------------|
| 10010 0.1 | riciation between operation |                            | (external eight input)                   |

(X4, X5: not supported by FRENIC-Mini)

|                     |                           | Functio                                    | n                                                                          | When                                   | Corr                     | nmand             | Su   | oport |
|---------------------|---------------------------|--------------------------------------------|----------------------------------------------------------------------------|----------------------------------------|--------------------------|-------------------|------|-------|
| Туре                | Assign-<br>ment<br>number | Internal<br>operation<br>command<br>symbol | Name                                                                       | not<br>assigned<br>(positive<br>logic) | Com-<br>Munica-<br>tions | Terminal<br>block | Mini | Eco   |
|                     | 34                        | PID-HLD                                    | PID integration hold                                                       | OFF                                    | Valid                    | Invalid           | 0    | 0     |
|                     | 35                        | LOC                                        | Local (keypad) command selection                                           | OFF                                    | Invalid                  | Valid             | ×    | 0     |
| General-<br>purpose | 38                        | RE                                         | Run enable                                                                 | ON                                     |                          |                   | ×    | 0     |
| input               | 39                        | DWP                                        | Condensation protection                                                    | OFF                                    |                          |                   | ×    | 0     |
| X1                  | 40                        | ISW50                                      | Switching to commercial<br>power supply<br>incorporated sequence<br>(50Hz) | ON                                     |                          | ×                 | 0    |       |
| X2<br>X3            | 41                        | ISW60                                      | Switching to commercial<br>power supply<br>incorporated sequence<br>(60Hz) | ON                                     | Valid                    | Invalid           | ×    | 0     |
| X4<br>X5            | 87                        | FR2/FR1                                    | Run command 2/run<br>command 1                                             | OFF                                    | Vana                     | invalia           | ×    | 0     |
| XF                  | 88                        | FWD2                                       | Forward run/stop<br>command 2                                              | OFF                                    |                          |                   | ×    | 0     |
| (FWD)<br>XR         | 89                        | REV2                                       | Reverse run/stop<br>command 2                                              | OFF                                    |                          |                   | ×    | 0     |
| (REV)               | 98                        | FWD*                                       | Forward operation/stop command                                             | OFF                                    |                          | 0                 | 0    |       |
|                     | 99                        | REV*                                       | Reverse operation/stop command                                             | OFF                                    |                          |                   | 0    | 0     |

Table 5.4 Relation between operation command (S06) and inverter terminal command (external signal input) (Continued)

(X4, X5: not supported by FRENIC-Mini)

\* Terminals FWD/REV only

#### [3] Function data

| Code | Name                     | Function                                                 | Permissible setting range | Min. step | Unit | R/W |
|------|--------------------------|----------------------------------------------------------|---------------------------|-----------|------|-----|
| S08  | Acceleration<br>time F07 | Set data with<br>common code<br>numbers and in<br>common | 0.0 to 3600.0             | 0.1       | s    | R/W |
| S09  | Deceleration<br>time F08 | communications<br>formats to models.                     | 0.0 to 3600.0             | 0.1       | S    | R/W |

Table 5.5 Function code and data (S08, S09)

- 1) When an attempt is made to enter a value out of the appropriate permissible setting range, an out-of-range error will result.
- 2) The acceleration time of S08 and the deceleration time of S09 are set to F07 (acceleration time 1) and F08 (deceleration time 1), respectively.
  (When F07 or F08 is changed on the keypad and so on, the changed data is reflected onto S08 or S09, respectively.)
- 3) The figures below the fourth place figure of the S08 acceleration time and the S09 deceleration time are omitted within the inverter. (If, for example, 123.4s is written, 123.0s is entered.)

# [4] Universal D0 and universal A0

(Not supported by FRENIC-Mini)

Table 5.6 Function code and data (S07, S12)

| Code | Name            | Function                                                  | Permissible setting<br>range                 | Min. step | Unit | R/W |
|------|-----------------|-----------------------------------------------------------|----------------------------------------------|-----------|------|-----|
| S07  | Universal<br>D0 | Command from<br>communications<br>function to terminal D0 | $0000_{H}$ to FFFF <sub>H</sub>              | 1         | -    | R/W |
| S12  | Universal<br>A0 | Command from<br>communications<br>function to terminal A0 | -32768 to 32767<br>(Full scale by<br>±20000) | 1         | _    | R/W |

- 1) A host can control the output terminal of the inverter through the communications function to issue commands to peripheral devices.
- When universal D0 and universal A0 are assigned to the following signals, the signals operate as simple output regardless of inverter's operation. Universal D0: Transistor output (Y1, Y2, Y3), relay output (Y5A/C, 30A/B/C) Universal A0: Analog output (FMA), pulse output (FMP)

## 5.1.3 Monitor data

Function codes for monitor data (M codes) are described in the four tables (1 to 4) below. These function codes are for reading only.

These function codes are for reading only. The "Support" column of the table indicates whether each function is supported by the respective models or not.  $\bigcirc$  indicates the function is supported, and  $\times$  indicates the function is not supported.

| Code | Name                                              | Description                                                                                                                                                         | Monitor range                                                 | Min.      | Unit | Sup  | port |
|------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------|------|------|------|
|      |                                                   |                                                                                                                                                                     |                                                               | step      |      | Mini | Eco  |
| M01  | Frequency<br>command (p.u.)<br>(final command)    | Frequency command<br>based on the<br>maximum output<br>frequency                                                                                                    | -32768 to 32767<br>(±20,000 =<br>maximum output<br>frequency) | 1         | _    | 0    | 0    |
| M05  | Frequency<br>command<br>(final command)           | Frequency command with min. step 0.01Hz                                                                                                                             | 0.00 to 655.35                                                | 0.01      | Hz   | 0    | 0    |
| M06  | Output frequency 1<br>(p.u.)                      | Output frequency<br>based on the<br>maximum output<br>frequency (before slip<br>compensation)                                                                       | -32768 to 32767<br>(±20,000 =<br>maximum output<br>frequency) | 1         | _    | 0    | 0    |
| M07  | Output torque                                     | Motor output torque<br>based on the motor's<br>rated torque (100%)                                                                                                  | -327.68 to<br>327.68                                          | 0.01      | %    | ×    | 0    |
| M09  | Output frequency<br>1                             | Output frequency with min. step 0.01Hz                                                                                                                              | FGI:<br>-655.35 to<br>655.35<br>RTU:<br>0.00 to 655.35        | 0.01      | Hz   | 0    | 0    |
| M10  | Input power                                       | Power consumption<br>value based on the<br>"nominal applicable<br>motor output" (100%)                                                                              | 0.00 to 399.99                                                | 0.01      | %    | 0    | 0    |
| M11  | Output current<br>effective value                 | Output current<br>effective value based<br>on the inverter rated<br>current                                                                                         | 0.00 to 399.99<br>(100% = inverter<br>rated current)          | 0.01      | %    | 0    | 0    |
| M12  | Output voltage<br>effective value                 | Output voltage<br>effective value<br>(min. step: 1.0V)                                                                                                              | 0.0 to 1000.0                                                 | 0.1<br>*1 | V    | 0    | 0    |
| M13  | Operation<br>command<br>(final command)           | Displays the final<br>command created<br>by information from<br>the keypad, terminal<br>block, and<br>communications,<br>and transmitted to<br>the inverter inside. | 0000 <sub>н</sub> to<br>FFFF <sub>H</sub>                     | _         | _    | 0    | 0    |
| M14  | Operation status                                  | Displays the<br>operation status in<br>bit signal.                                                                                                                  | 0000 <sub>н</sub> to<br>FFFF <sub>H</sub>                     | -         | -    | 0    | 0    |
| M15  | General-purpose<br>output terminal<br>information | General-purpose<br>output terminal<br>information is<br>monitored.                                                                                                  | 0000 <sub>н</sub> to<br>FFFF <sub>H</sub>                     | _         | _    | 0    | 0    |

Table 5.7Monitor data function codes (1)

1\* Since M12 does not have any data after the decimal point, the minimum step is 1.0.

| Code | Name                                                       | Description                                                                                 | Monitor range                                                       | Min. | Unit | Sup  | Support |  |
|------|------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------|------|------|---------|--|
|      |                                                            |                                                                                             |                                                                     | step |      | Mini | Eco     |  |
| M16  | Latest alarm contents                                      | Display alarm<br>contents in the form<br>of code.                                           | 0 to 127                                                            | -    | _    | 0    | 0       |  |
| M17  | Last alarm<br>contents                                     |                                                                                             |                                                                     |      |      |      |         |  |
| M18  | Second last alarm contents                                 |                                                                                             |                                                                     |      |      |      |         |  |
| M19  | Third last alarm<br>contents                               |                                                                                             |                                                                     |      |      |      |         |  |
| M20  | Cumulative operation time                                  | -                                                                                           | 0 to 65535                                                          | 1    | h    | 0    | 0       |  |
| M21  | DC link circuit voltage                                    | Displays the DC link<br>circuit voltage of the<br>inverter.                                 | 0 to 1000                                                           | 1    | V    | 0    | 0       |  |
| M23  | Model code                                                 | Displays the series,<br>generation, model,<br>and voltage series in<br>four-digit HEX data. | 0000 <sub>н</sub> to<br>FFFF <sub>H</sub>                           | _    | -    | 0    | 0       |  |
| M24  | Capacity code                                              | Displays the<br>capacity of the<br>inverter.                                                | 0 to 65535                                                          | 1    | _    | 0    | 0       |  |
| M25  | ROM version                                                | Displays the ROM version used in the inverter.                                              | 0 to 9999                                                           | 1    | -    | 0    | 0       |  |
| M26  | Transmission<br>error transaction<br>code                  | Communications<br>error code of RS485                                                       | 0 to 127                                                            | -    | -    | 0    | 0       |  |
| M27  | Frequency<br>command on<br>alarm (p.u.)<br>(final command) | Data equivalent to<br>M01 on alarm                                                          | -32768 to<br>32767<br>(±20,000 =<br>maximum<br>output<br>frequency) | 1    | _    | 0    | 0       |  |
| M31  | Frequency<br>command on<br>alarm<br>(final command)        | Data equivalent to<br>M05 on alarm                                                          | 0.00 to 655.35                                                      | 0.01 | Hz   | 0    | 0       |  |
| M32  | Output frequency<br>1 on alarm (p.u.)                      | Data equivalent to<br>M06 on alarm                                                          | -32768 to<br>32767<br>(±20,000 =<br>maximum<br>output<br>frequency) | 1    | _    | 0    | 0       |  |
| M33  | Output torque on alarm                                     | Data equivalent to<br>M07 on alarm                                                          | -327.68 to<br>327.67                                                | 0.01 | %    | ×    | 0       |  |
| M35  | Output frequency<br>1 on alarm                             | Data equivalent to<br>M09 on alarm                                                          | FGI:<br>-655.35 to<br>655.35<br>RTU:<br>0.00 to 655.35              | 0.01 | Hz   | 0    | 0       |  |
| M36  | Input power on<br>alarm                                    | Data equivalent to M10 on alarm                                                             | 0.00 to 399.99                                                      | 0.01 | %    | 0    | 0       |  |
| M37  | Output current<br>effective value on<br>alarm              | Data equivalent to<br>M11 on alarm                                                          | 0.00 to 399.99<br>(100% =<br>inverter rated<br>current)             | 0.01 | %    | 0    | 0       |  |
| M38  | Output voltage<br>effective value on<br>alarm              | Data equivalent to<br>M12 on alarm                                                          | 0.0 to 1000.0                                                       | 1.0  | V    | 0    | 0       |  |

Table 5.8Monitor data function codes (2)

| Code | Name                                                          | Description                                                                                    | Monitor range                             | Min. | Unit | Support |     |  |
|------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------|------|------|---------|-----|--|
|      |                                                               |                                                                                                |                                           | step |      | Mini    | Eco |  |
| M39  | Operation<br>command on<br>alarm                              | Data equivalent to<br>M13 on alarm                                                             | 0000 <sub>H</sub> to<br>FFFF <sub>H</sub> | -    | _    | 0       | 0   |  |
| M40  | Operation status on alarm                                     | Data equivalent to<br>M14 on alarm                                                             | 0000 <sub>н</sub> to<br>FFFF <sub>H</sub> | -    | -    | 0       | 0   |  |
| M41  | General-purpose<br>output terminal<br>information on<br>alarm | Data equivalent to<br>M15 on alarm                                                             | 0000 <sub>H</sub> to<br>FFFF <sub>H</sub> | _    | _    | 0       | 0   |  |
| M42  | Cumulative<br>operation time on<br>alarm                      | Data equivalent to<br>M20 on alarm                                                             | 0 to 65535                                | 1    | h    | 0       | 0   |  |
| M43  | DC link circuit voltage on alarm                              | Data equivalent to<br>M21 on alarm                                                             | 0 to 1000                                 | 1    | V    | 0       | 0   |  |
| M44  | Inverter internal<br>air temperature<br>on alarm              | Air temperature<br>inside the inverter on<br>alarm                                             | 0 to 255                                  | 1    | °C   | ×       | 0   |  |
| M45  | Heat sink<br>temperature on<br>alarm                          | Data equivalent to<br>M62 on alarm                                                             | 0 to 255                                  | 1    | °C   | 0       | 0   |  |
| M46  | Life of main<br>circuit capacitor                             | The capacity of the<br>main circuit<br>capacitor is 100%<br>when delivered from<br>the factory | 0.0 to 100.0                              | 0.1  | %    | 0       | 0   |  |
| M47  | Life of PC board<br>electrolytic<br>capacitor                 | Cumulative<br>operation time of the<br>capacitor packaged<br>on the PC board                   | 0 to 65535                                | 1    | h    | 0       | 0   |  |
| M48  | Life of heat sink                                             | Cumulative<br>operation time of the<br>heat sink                                               | 0 to 65535                                | 1    | h    | 0       | 0   |  |
| M49  | Input terminal<br>voltage ([12])                              | Input voltage of<br>terminal [12]<br>(-20,000/-10V,<br>20,000/10V)                             | -32678 to<br>32767                        | 1    | _    | 0       | 0   |  |
| M50  | Input terminal<br>current ([C1])                              | Input current of<br>terminal [C1]<br>(0/0mA,<br>20,000/20mA)                                   | 0 to 32767                                | 1    | _    | 0       | 0   |  |
| M54  | Input terminal<br>voltage ([V2])                              | Input voltage of<br>terminal [V2]<br>(-20000/10V to<br>20000/10V)                              | -32768 to<br>32767                        | 1    | -    | ×       | 0   |  |
| M61  | Inverter internal air temperature                             | Current temperature inside the inverter                                                        | 0 to 255                                  | 1    | °C   | ×       | 0   |  |
| M62  | Heat sink<br>temperature                                      | Current temperature<br>of the heat sink<br>within the inverter                                 | 0 to 255                                  | 1    | °C   | 0       | 0   |  |
| M63  | Load rate                                                     | Load rate based on the motor rating                                                            | -327.68 to<br>327.67                      | 0.01 | %    | ×       | 0   |  |
| M64  | Motor output                                                  | Motor output based<br>on the motor's rated<br>output (kW)                                      | -327.68 to<br>327.67                      | 0.01 | %    | ×       | 0   |  |
| M65  | Motor output on alarm                                         | Data equivalent to<br>M64 on alarm                                                             | -327.68 to<br>327.67                      | 0.01 | %    | ×       | 0   |  |

Table 5.9Monitor data function codes (3)

| Code | Name                          | Description                                                                       | Monitor range                             | Min.          | Unit | Support |     |  |
|------|-------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------|---------------|------|---------|-----|--|
|      |                               |                                                                                   |                                           | step          |      | Mini    | Eco |  |
| M68  | PID final<br>command          | ±20000/±100%                                                                      | -32678 to<br>32767                        | 1             | _    | 0       | 0   |  |
| M69  | Inverter rated<br>current     | FGI                                                                               | 0.00 to 9999                              | Vari-<br>able | A    | 0       | 0   |  |
|      |                               | RTU (inverter<br>capacity 22kW<br>(30HP) or less)                                 | 0.00 to 655.35                            | 0.01          | A    | 0       | 0   |  |
|      |                               | RTU (inverter<br>capacity 30kW<br>(40HP) or more)                                 | 0.0 to 5000.0                             | 0.1           | A    | ×       | 0   |  |
| M70  | Operation status 2            | Displays the<br>operation status in<br>the form of a bit<br>signal.               | 0000 <sub>н</sub> to<br>FFFF <sub>H</sub> | 1             | -    | 0       | 0   |  |
| M71  | Input terminal<br>information | Operation command<br>information from the<br>terminal block and<br>communications | 0000 <sub>н</sub> to<br>FFFF <sub>H</sub> | 1             | _    | 0       | 0   |  |
| M72  | PID feedback                  | PID feedback based<br>on 100% of analog<br>input (±20000/100%)                    | -32768 to<br>32767                        | 1             | _    | ×       | 0   |  |
| M73  | PID output                    | PID output based on<br>the maximum output<br>frequency (F03)<br>(±20000/100%)     | -32768 to<br>32767                        | 1             | _    | ×       | 0   |  |

| Table 5.9 | Monitor data function codes (4) |
|-----------|---------------------------------|
|           | . ,                             |

## 5.1.4 Information displayed on the keypad

The function codes used to read, via RS485, information displayed on the keypad are classified into W codes, X codes, and Z codes. All of these function codes are for read only.

The function codes shown in Tables 5.10 to 5.12 correspond to the menu numbers displayed on the LEDs on the keypad shown in the "LED display" field. The "Support" column of the table indicates whether each function is supported by the respective models or not. O indicates the function is supported, and  $\times$  indicates the function is not supported.

For further information about data displayed on the keypad, see Chapter 3 "OPERATION USING THE KEYPAD" of the FRENIC-Mini Instruction Manual (INR-SI47-0791-E) or FRENIC-Eco Instruction Manual (INR-SI47-0882-E).

RTU and FGI in the Remarks field represent the Modbus RTU protocol and the Fuji general-purpose inverter protocol, respectively.

| Code | Nama                                        | Monitor range                                 | Min ator | Linit | LED                            | Sup  | port | Remarks                                                                                                              |
|------|---------------------------------------------|-----------------------------------------------|----------|-------|--------------------------------|------|------|----------------------------------------------------------------------------------------------------------------------|
| Code | Name                                        | Monitor range                                 | Min step | Unit  | display                        | Mini | Eco  | Remarks                                                                                                              |
| W01  | Operation status                            | $0000_{\text{H}}$ to $\text{FFFF}_{\text{H}}$ | 1        | -     | 3_07                           | 0    | 0    |                                                                                                                      |
| W02  | Frequency command                           | 0.00 to 655.35                                | 0.01     | Hz    | 3_05                           | 0    | 0    |                                                                                                                      |
| W03  | Output frequency (before slip compensation) | 0.00 to 655.35                                | 0.01     | Hz    | 3_00                           | 0    | 0    |                                                                                                                      |
| W04  | Output frequency (after slip compensation)  | 0.00 to 655.35                                | 0.01     | Hz    | 3_07                           | 0    | ×    |                                                                                                                      |
| W05  | Output current                              | 0.00 to 9999                                  | Variable | A     | 3_02                           | 0    | 0    | FGI                                                                                                                  |
|      |                                             | 0.00 to 655.35                                | 0.01     | A     | 3_02                           | 0    | 0    | RTU<br>(inverter capacity<br>22kW (30HP) or<br>less)                                                                 |
|      |                                             | 0.0 to 5000.0                                 | 0.1      | A     | 3_02                           | ×    | 0    | RTU<br>(inverter capacity<br>30kW (40HP) or<br>more)                                                                 |
| W06  | Output voltage                              | 0.0 to 1000.0                                 | 0.1      | V     | 3_03                           | 0    | 0    |                                                                                                                      |
| W07  | Torque operation value                      | -999 to 999                                   | 1        | %     | 3_04                           | ×    | 0    |                                                                                                                      |
| W08  | Motor speed                                 | 0.00 to 99990                                 | Variable | r/min | 3_08                           | ×    | 0    |                                                                                                                      |
| W09  | Load rotation speed                         | 0.00 to 99990                                 | Variable | r/min | 3_09                           | 0    | 0    |                                                                                                                      |
| W10  | Line speed                                  | 0.00 to 99990                                 | Variable | m/min | 3_09                           | 0    | ×    |                                                                                                                      |
| W11  | PID process command                         | -999 to 9990                                  | Variable | -     | 3_ 10                          | 0    | 0    | PID process                                                                                                          |
| W12  | PID feedback value                          | -999 to 9990                                  | Variable | _     | 3_ / /                         | 0    | 0    | command or PID<br>feedback value<br>converted to the<br>physical quantity of<br>the control target by<br>E40 and E41 |
| W16  | Motor speed set value                       | 0.00 to 99990                                 | Variable | r/min | Speed<br>monitor               | ×    | 0    |                                                                                                                      |
| W17  | Load speed set value                        | 0.00 to 99990                                 | Variable | r/min | Speed<br>monitor               | 0    | 0    |                                                                                                                      |
| W18  | Line speed set value                        | 0.00 to 99990                                 | Variable | r/min | Speed<br>monitor               | 0    | ×    |                                                                                                                      |
| W19  | Constant feed time set value                | 0.00 to 999.9                                 | Variable | min   | Speed<br>monitor               | 0    | ×    |                                                                                                                      |
| W20  | Constant feed time                          | 0.00 to 999.9                                 | Variable | min   | Speed<br>monitor               | 0    | ×    |                                                                                                                      |
| W21  | Input power                                 | 0.00 to 9999                                  | Variable | kW    | Operation<br>status<br>monitor | 0    | 0    |                                                                                                                      |
| W22  | Motor output power                          | 0.00 to 9999                                  | Variable | kW    | Operation<br>status<br>monitor | ×    | 0    |                                                                                                                      |
| W23  | Load factor                                 | -999 to 999                                   | 1        | %     | Operation<br>status<br>monitor | ×    | 0    |                                                                                                                      |
| W27  | Timer operation remaining time              | 0 to 9999                                     | 1        | S     | Operation<br>status<br>monitor | 0    | ×    |                                                                                                                      |
| W28  | Operation command source                    | 0 to 22                                       | 1        | -     | -                              | 0    | 0    | *1                                                                                                                   |
| W29  | Frequency, PID command source               | 0 to 35                                       | 1        | -     | -                              | 0    | 0    | *2                                                                                                                   |
| W30  | Speed (unit: %)                             | 0.00 to 100.00                                | 0.01     | %     | Speed<br>monitor               | ×    | 0    |                                                                                                                      |
| W31  | Speed setting (unit: %)                     | 0.00 to 100.00                                | 0.01     | %     | Speed<br>monitor               | ×    | 0    |                                                                                                                      |
| W32  | PID output                                  | 0 to 150.0                                    | 0.1      | %     | Operation<br>status<br>monitor | ×    | 0    | PID output<br>expressed by a<br>percentage with<br>setting the maximur<br>output frequency<br>(F03) to 100%          |

 Table 5.10
 Keypad-related function code (W codes)

| Code | Name                                     | Monitor rongo                   | Min aton | Linit | LED                            | Sup  | port | Remarks                                                |
|------|------------------------------------------|---------------------------------|----------|-------|--------------------------------|------|------|--------------------------------------------------------|
| Code | Name                                     | Monitor range                   | Min step | Unit  | display                        | Mini | Eco  | Remarks                                                |
| W33  | Analog input monitor                     | -999 to 9990                    | Variable | -     | Operation<br>status<br>monitor | ×    | 0    | Inverter's analog<br>input converted by<br>E40 and E41 |
| W40  | Control circuit terminal<br>(input)      | $0000_{H}$ to FFFF <sub>H</sub> | 1        | Ι     | 4_00                           | 0    | 0    |                                                        |
| W41  | Control circuit terminal (output)        | $0000_{H}$ to FFFF <sub>H</sub> | 1        | -     | 4_00                           | 0    | 0    |                                                        |
| W42  | Communications control<br>signal (input) | $0000_H$ to FFFF <sub>H</sub>   | 1        | -     | 4_07                           | 0    | 0    |                                                        |
| W43  | Communications control signal (output)   | $0000_{H}$ to FFFF <sub>H</sub> | 1        | _     | 4_01                           | 0    | 0    |                                                        |
| W44  | Terminal [12] input voltage              | 0.0 to 12.0                     | 0.1      | V     | 4_02                           | 0    | 0    |                                                        |

Table 5.10 Keypad-related function code (W codes) (Continued)

\*1 Operation command source code

Indicates the current source of operation commands. For FRENIC-Mini, this code is 20 when operation commands from the loader are effective.

| Code | Description                                                              | Mini | Eco |
|------|--------------------------------------------------------------------------|------|-----|
| 0    | Run by the keypad<br>(rotation direction: depends on the terminal input) | 0    | 0   |
| 1    | Run by the terminals                                                     | 0    | 0   |
| 2    | Run by the keypad (forward rotation)                                     | 0    | 0   |
| 3    | Run by the keypad (reverse rotation)                                     | 0    | 0   |
| 4    | Run command 2 (when FR2/FR1 is ON)                                       | ×    | 0   |
| 20   | RS485 channel 1 *3                                                       | 0    | 0   |
| 21   | RS485 channel 2 *3                                                       | ×    | 0   |
| 22   | Bus option                                                               | ×    | 0   |
| 23   | Loader                                                                   | ×    | 0   |

\*2 Frequency command source/PID command source code

FRENIC-Eco

**FRENIC-Mini** 

: Indicates a frequency command source even if PID is effective. This code is 20 when the frequency command from the loader is effective.

: Indicates a PID command source if PID is effective (code 30 or later). Indicates a frequency command source if PID is not effective (code 29 or less).

|      | less).                                                    |      |     |
|------|-----------------------------------------------------------|------|-----|
| Code | Description                                               | Mini | Eco |
| 0    | Keypad key operations                                     | 0    | 0   |
| 1    | Voltage input (terminal 12)                               | 0    | 0   |
| 2    | Current input (terminal C1)                               | 0    | 0   |
| 3    | Voltage input (terminal 12) + current input (terminal C1) | 0    | 0   |
| 4    | Inverter volume                                           | 0    | ×   |
| 5    | Voltage input (terminal V2)                               | ×    | 0   |
| 7    | UP/DOWN                                                   | ×    | 0   |
| 20   | RS485 channel 1*3                                         | 0    | 0   |
| 21   | RS485 channel 2*3                                         | ×    | 0   |
| 22   | Bus option                                                | ×    | 0   |
| 23   | Loader (20 for FRENIC-Mini)                               | ×    | 0   |
| 24   | Multi-step frequency                                      | ×    | 0   |
| 30   | PID keypad command                                        | ×    | 0   |
| 31   | PID analog command 1                                      | ×    | 0   |
| 33   | PID UP/DOWN command                                       | ×    | 0   |
| 34   | PID communications process command                        | ×    | 0   |
| 36   | PID multi-step command                                    | х    | 0   |
| B.   |                                                           |      |     |

#### \*3 RS485 channel

|                 | FRENIC-Mini                        | FRENIC-Eco                                  |
|-----------------|------------------------------------|---------------------------------------------|
| RS485 channel 1 | RS485 communications card (option) | Keypad connection connector on the inverter |
| RS485 channel 2 | _                                  | RS485 communications card (option)          |

|      |                                                                       | Support       |          |       |                |      |     |                                                                                                                |
|------|-----------------------------------------------------------------------|---------------|----------|-------|----------------|------|-----|----------------------------------------------------------------------------------------------------------------|
| Code | Name                                                                  | Monitor range | Min step | Unit  | LED<br>display | Mini | Eco | Remarks                                                                                                        |
| W45  | Terminal [C1] input current                                           | 0.0 to 30.0   | 0.1      | mA    | 4_03           | 0    | 0   |                                                                                                                |
| W46  | FMA output voltage                                                    | 0.0 to 12.0   | 0.1      | V     | 4_04           | 0    | 0   |                                                                                                                |
| W47  | FMP output voltage                                                    | 0.0 to 12.0   | 0.1      | V     | 4_05           | Х    | 0   |                                                                                                                |
| W48  | FMP output frequency                                                  | 0 to 6000     | 1        | -     | 4_05           | ×    | 0   | The output pulse<br>rate of terminal FMP<br>expressed by (p/s)                                                 |
| W49  | Terminal [V2] input voltage                                           | 0.0 to 12.0   | 0.1      | V     | 4_07           | ×    | 0   |                                                                                                                |
| W50  | FMA output current                                                    | 0.0 to 30.0   | 0.1      | MA    | 4_08           | ×    | 0   |                                                                                                                |
| W70  | Cumulative operation time                                             | 0 to 65535    | 1        | h     | 5_00           | 0    | 0   |                                                                                                                |
| W71  | DC link circuit voltage                                               | 0 to 1000     | 1        | V     | 5_07           | 0    | 0   |                                                                                                                |
| W72  | Maximum temperature of internal air                                   | 0 to 255      | 1        | °C    | 5_02           | ×    | 0   |                                                                                                                |
| W73  | Maximum temperature of<br>heat sink                                   | 0 to 255      | 1        | °C    | 5_03           | 0    | 0   |                                                                                                                |
| W74  | Maximum effective current value                                       | 0.00 to 9999  | Variable | A     | 5_04           | 0    | 0   |                                                                                                                |
| W75  | Capacitor of the DC bus capacitor                                     | 0.00 to 100.0 | 0.1      | %     | 5_05           | 0    | 0   |                                                                                                                |
| W76  | Cumulative operation time of<br>electrolytic capacitor on PC<br>board | 0 to 65535    | 1        | h     | 5_05           | 0    | 0   |                                                                                                                |
| W77  | Cumulative operation time of cooling fan                              | 0 to 65535    | 1        | h     | 5_07           | 0    | 0   |                                                                                                                |
| W78  | Number of startups                                                    | 0 to 65535    | 1        | Times | 5_08           | 0    | 0   |                                                                                                                |
| W79  | Cumulative operation time of motor                                    | 0 to 65535    | 1        | h     | 5_23           | ×    | 0   |                                                                                                                |
| W80  | Standard fan life                                                     | 0 to 65535    | 1        | h     | -              | ×    | 0   |                                                                                                                |
| W81  | Integral electric power<br>consumption                                | 0.001 to 9999 | Variable | _     | 5_03           | ×    | 0   | Value calculated by<br>assuming an integral<br>power consumption<br>of 100kWh as one<br>(100kWh when<br>W81=1) |
| W82  | Integral electric power<br>consumption data                           | 0.001 to 9999 | Variable | _     | 5_ 10          | ×    | 0   | Value calculated as<br>integral power<br>consumption (kWh)<br>multiplied by function<br>code E51               |
| W83  | Number of RS485 Ch1<br>errors                                         | 0 to 9999     | 1        | Times | 5_ / /         | 0    | 0   |                                                                                                                |
| W84  | Contents of RS485 Ch1<br>error                                        | 0 to 127      | 1        | -     | 5_ 12          | 0    | 0   |                                                                                                                |
| W85  | Number of RS485 Ch2<br>errors                                         | 0 to 9999     | 1        | Times | 5_ 7           | ×    | 0   |                                                                                                                |
| W87  | Inverter's ROM version                                                | 0 to 9999     | 1        | -     | 5_ 14          | 0    | 0   |                                                                                                                |
| W89  | Remote/multi-function keypad ROM version                              | 0 to 9999     | 1        | _     | 5_ 15          | 0    | 0   |                                                                                                                |
| W90  | Option ROM version                                                    | 0 to 9999     | 1        | -     | 5_ 19          | ×    | 0   |                                                                                                                |
| W94  | Content of RS485 Ch2<br>error                                         | 0 to 127      | 1        | -     | 5_ 18          | ×    | 0   |                                                                                                                |
| W95  | Number of option communications errors                                | 0 to 9999     | 1        | Times | 5_ 13          | ×    | 0   |                                                                                                                |
| W96  | Content of option<br>communications error                             | 0 to 9999     | 1        | _     | _              | ×    | 0   | *                                                                                                              |

| Table 5.10 | Keypad-related function code | (W codes) | (Continued) |
|------------|------------------------------|-----------|-------------|

\* Indicates the content of a communications error between the inverter and an option card. For details, see the manual of each option.

|            |                                                     |                                                     |          |        | LED                          | Sup    | port |                                   |
|------------|-----------------------------------------------------|-----------------------------------------------------|----------|--------|------------------------------|--------|------|-----------------------------------|
| Code       | Name                                                | Monitor range                                       | Min step | Unit   | display                      | Mini   | Eco  | Remarks                           |
| X00        | Alarm history (latest)                              | $0000_{H}$ to FFFF <sub>H</sub>                     | 1        | -      | 5_ <i>R</i> L                | 0      | 0    | Contents of 1 in                  |
|            |                                                     |                                                     |          |        |                              |        |      | alarm list                        |
| ¥04        | Multiple plane 4 (latest)                           |                                                     | 4        |        | <i>(</i>                     | 0      | 0    | (example: /. []/_ /)              |
| X01        | Multiple alarm 1 (latest)                           | 0000 <sub>H</sub> to FFFF <sub>H</sub>              | 1        | -      | <u> </u>                     | 0 0    | 0    |                                   |
| X02        | Multiple alarm 2 (latest)                           | $0000_{\rm H}$ to FFFF <sub>H</sub>                 | 1        | -      | 0_ //                        |        | 0    |                                   |
| X03<br>X05 | Sub-code<br>Alarm history (last)                    | 0 to 9999<br>0000 <sub>H</sub> to FFFF <sub>H</sub> | 1        | _      | -<br>5_AL                    | ×      | 0    | Contents of 2 in                  |
| 705        | Aldini history (last)                               |                                                     | 1        | _      |                              | 0      | 0    | alarm list                        |
|            |                                                     |                                                     |          |        |                              |        |      | (example: _?. [][_ /)             |
| X06        | Multiple alarm 1 (last)                             | $0000_{H}$ to FFFF <sub>H</sub>                     | 1        | _      | 5_15                         | 0      | 0    |                                   |
| X07        | Multiple alarm 2 (last)                             | $0000_{H}$ to $FFFF_{H}$                            | 1        | -      | 5_ 77                        | 0      | 0    |                                   |
| X08        | Sub-code                                            | 0 to 9999                                           | 1        | -      | _                            | ×      | 0    |                                   |
| X10        | Alarm history (second last)                         | $0000_{\text{H}}$ to $\text{FFFF}_{\text{H}}$       | 1        | -      | 5_ <i>R</i> L                | 0      | 0    | Contents of 3 in                  |
|            |                                                     |                                                     |          |        |                              |        |      | alarm list                        |
| V11        | Multiple clarm 1 (second                            |                                                     | 1        |        | <i>I</i> /                   | 0      | 0    | (example: <u>-</u>                |
| X11        | Multiple alarm 1 (second<br>last)                   | $0000_{H}$ to FFFF <sub>H</sub>                     | 1        | -      | 6_ 15                        | 0      |      |                                   |
| X12        | Multiple alarm 2 (second last)                      | $0000_{H}$ to FFFF <sub>H</sub>                     | 1        | -      | 5_ 7                         | 0      | 0    |                                   |
| X13        | Sub-code                                            | 0 to 9999                                           | 1        | _      | _                            | ×      | 0    |                                   |
| X15        | Alarm history (third last)                          | 0000 <sub>H</sub> to FFFF <sub>H</sub>              | 1        | _      | 5_RL                         | 0      | 0    | Contents of 4 in                  |
|            | ·                                                   |                                                     | -        |        | 02.02                        |        |      | alarm list                        |
|            |                                                     |                                                     |          |        |                              |        |      | (example: <i>\. \. \. \. \.</i> ) |
| X16        | Multiple alarm 1 (third last)                       | $0000_H$ to FFFF <sub>H</sub>                       | 1        | -      | 6_ IS                        | 0      | 0    |                                   |
| X17        | Multiple alarm 2 (third last)                       | $0000_H$ to FFFF <sub>H</sub>                       | 1        | -      | 6_ 7                         | 0      | 0    |                                   |
| X18        | Sub-code                                            | 0 to 9999                                           | 1        | -      | -                            | ×      | 0    |                                   |
| X20        | Latest information on<br>alarm (output frequency)   | 0.00 to 655.35                                      | 0.01     | Hz     | 6_00                         | 0      | 0    |                                   |
| X21        | (output current)                                    | 0.00 to 9999                                        | Variable | A      | 6_07                         | 0      | 0    | FGI                               |
|            |                                                     | 0.00 to 655.35                                      | 0.01     | A      | 5_07                         | 0      | 0    | RTU (inverter<br>capacity 22kW    |
|            |                                                     |                                                     |          |        |                              |        |      | (30HP) or less)                   |
|            |                                                     | 0.0 to 5000.0                                       | 0.1      | Α      | 5_07                         | ×      | 0    | RTU (inverter                     |
|            |                                                     |                                                     |          |        |                              |        |      | capacity 30kW                     |
|            |                                                     |                                                     |          |        |                              |        |      | (40HP) or more)                   |
| X22        | (output voltage)                                    |                                                     | 1        | V      | 6_02                         | 0      | 0    |                                   |
| X23        | (torque operation value)                            | -999 to 999                                         | 1        | %      | 6_03<br>c nu                 | ×      | 0    |                                   |
| X24        | (set frequency)                                     | 0.00 to 655.35                                      | 0.01     | Hz     | 6_04<br>e ne                 | 0      | 0    |                                   |
| X25<br>X26 | (operation status)<br>(cumulative operation time)   | $0000_{H}$ to FFFF <sub>H</sub><br>0 to 65535       | 1        | –<br>h | <i>6_0</i> 5<br><i>6_0</i> 7 | 0      | 0    |                                   |
| X20<br>X27 | (number of startups)                                | 0 to 65535                                          | 1        | Times  | 6_07<br>6_08                 | 0 0    | 0    |                                   |
| X28        | (DC link circuit voltage)                           | 0 to 1000                                           | 1        | V      | 5_09                         | 0 0    | 0    |                                   |
| X29        | (internal air temperature)                          | 0 to 255                                            | 1        | °C     | 6_ ID                        | )<br>× | 0    |                                   |
| X30        | (heat sink temperature)                             | 0 to 255                                            | 1        | °C     | 5_ / /                       | Ô      | 0    |                                   |
| X31        | (control circuit terminal<br>(input))               | $0000_{\rm H}$ to FFFF <sub>H</sub>                 | 1        | -      | 6_ 12<br>6_ 12<br>6_ 13      | 0      | 0    |                                   |
| X32        | ((input))<br>(control circuit terminal<br>(output)) | $0000_{H}$ to FFFF <sub>H</sub>                     | 1        | -      | 6_ 12<br>6_ 12<br>6_ 14      | 0      | 0    |                                   |
| X33        | (communications control<br>signal (input))          | $0000_{H}$ to FFFF <sub>H</sub>                     | 1        | -      | 6_ 18<br>6_ 18<br>6_ 19      | 0      | 0    |                                   |
| X34        | (communications control<br>signal (output))         | $0000_{H}$ to FFFF <sub>H</sub>                     | 1        | -      | 6_ 18<br>6_ 20               | 0      | 0    |                                   |

| Table 5 11 | Keypad-related function codes (X codes | :)  |
|------------|----------------------------------------|-----|
|            |                                        | · / |

| Orde | Nama                                            |                                              |          | Unit            | LED            | Sup  | port | Demerke                                           |
|------|-------------------------------------------------|----------------------------------------------|----------|-----------------|----------------|------|------|---------------------------------------------------|
| Code | Name                                            | me Monitor range Min s                       |          | Min step Unit d |                | Mini | Eco  | Remarks                                           |
| X60  | Last information on alarm<br>(output frequency) | 0.00 to 655.35                               | 0.01     | Hz              | 6_00           | 0    | 0    |                                                   |
| X61  | (output current)                                | 0.00 to 9999                                 | Variable | Α               | 6_07           | 0    | 0    | FGI                                               |
|      |                                                 | 0.00 to 655.35                               | 0.01     | A               | 6_07           | 0    | 0    | RTU (inverter<br>capacity 22kW<br>(30HP) or less) |
|      |                                                 | 0.0 to 5000.0                                | 0.1      | A               | 6_07           | ×    | 0    | RTU (inverter<br>capacity 30kW<br>(40HP) or more) |
| X62  | (output voltage)                                | 0 to 1000                                    | 1        | V               | 6_02           | 0    | 0    |                                                   |
| X63  | (torque operation value)                        | -999 to 999                                  | 1        | %               | 6_03           | ×    | 0    |                                                   |
| X64  | (set frequency)                                 | 0.00 to 655.35                               | 0.01     | Hz              | 6_04           | 0    | 0    |                                                   |
| X65  | (operation status)                              | $0000_{\text{H}}$ to $\text{FFF}_{\text{H}}$ | 1        | -               | 6_06           | 0    | 0    |                                                   |
| X66  | (cumulative operation time)                     | 0 to 65535                                   | 1        | h               | 6_07           | 0    | 0    |                                                   |
| X67  | (number of startups)                            | 0 to 65535                                   | 1        | Times           | 6_08           | 0    | 0    |                                                   |
| X68  | (DC link circuit voltage)                       | 0 to 1000                                    | 1        | V               | 6_09           | 0    | 0    |                                                   |
| X69  | (internal air temperature)                      | 0 to 255                                     | 1        | °C              | 6_ 10          | ×    | 0    |                                                   |
| X70  | (heat sink temperature)                         | 0 to 255                                     | 1        | °C              | 6_ / /         | 0    | 0    |                                                   |
| X71  | (control circuit terminal<br>(input))           | $0000_H$ to FFFF <sub>H</sub>                | 1        | -               | 6_ 12<br>6_ 13 | 0    | 0    |                                                   |
| X72  | (control circuit terminal<br>(output))          | $0000_{H}$ to FFFF <sub>H</sub>              | 1        | _               | 6_ 12<br>6_ 14 | 0    | 0    |                                                   |
| X73  | (communications control<br>signal (input))      | $0000_{H}$ to FFFF <sub>H</sub>              | 1        | -               | 6_ 18<br>6_ 19 | 0    | 0    |                                                   |
| X74  | (communications control<br>signal (output))     | $0000_{H}$ to FFFF <sub>H</sub>              | 1        | _               | 6_ 18<br>6_20  | 0    | 0    |                                                   |

Table 5.11 Keypad-related function codes (X codes) (Continued)

|      |                                             | Maaita                                        | NA:      | 11.34 | LED              | Sup  | port | Demand                                               |
|------|---------------------------------------------|-----------------------------------------------|----------|-------|------------------|------|------|------------------------------------------------------|
| Code | Name                                        | Monitor range                                 | Min step | Unit  | display          | Mini | Eco  | Remarks                                              |
| Z00  | Second last information on alarm            | 0.00 to 655.35                                | 0.01     | Hz    | 6_00             | 0    | 0    |                                                      |
|      | (output frequency)                          |                                               |          |       |                  |      |      |                                                      |
| Z01  | (output current)                            | 0.00 to 9999                                  | Variable | Α     | 5_07             | 0    | 0    | FGI                                                  |
|      | , , , , , , , , , , , , , , , , , , ,       | 0.00 to 655.35                                | 0.01     | Α     | 5_07             | 0    | 0    | RTU                                                  |
|      |                                             |                                               |          |       |                  |      |      | (inverter capacity<br>22kW (30HP) or<br>less)        |
|      |                                             | 0.0 to 5000.0                                 | 0.1      | A     | 6_07             | ×    | 0    | RTU<br>(inverter capacity<br>30kW (40HP) or<br>more) |
| Z02  | (output voltage)                            | 0 to 1000                                     | 1        | V     | 5_ <i>02</i>     | 0    | 0    |                                                      |
| Z03  | (torque operation value)                    | -999 to 999                                   | 1        | %     | 5_03             | ×    | 0    |                                                      |
| Z04  | (set frequency)                             | 0.00 to 655.35                                | 0.01     | Hz    | 5_04             | 0    | 0    |                                                      |
| Z05  | (operation status)                          | $0000_{H}$ to FFFF <sub>H</sub>               | 1        | -     | 5_05             | 0    | 0    |                                                      |
| Z06  | (cumulative operation time)                 | 0 to 65535                                    | 1        | h     | 5_07             | 0    | 0    |                                                      |
| Z07  | (number of startups)                        | 0 to 65535                                    | 1        | Times | 5_08             | 0    | 0    |                                                      |
| Z08  | (DC link circuit voltage)                   | 0 to 1000                                     | 1        | V     | 5_09             | 0    | 0    |                                                      |
| Z09  | (internal air temperature)                  | 0 to 255                                      | 1        | °C    | 5_ ID            | ×    | 0    |                                                      |
| Z10  | (heat sink temperature)                     | 0 to 255                                      | 1        | °C    | 5_ / /           | 0    | 0    |                                                      |
| Z11  | (control circuit terminal<br>(input))       | $0000_{H}$ to FFFF <sub>H</sub>               | 1        | -     | 6_ 12<br>6_ 13   | 0    | 0    |                                                      |
| Z12  | (control circuit terminal<br>(output))      | $0000_{H}$ to FFFF <sub>H</sub>               | 1        | -     | 6_ 12<br>6_ 14   | 0    | 0    |                                                      |
| Z13  | (communications control<br>signal (input))  | $0000_H$ to FFFF <sub>H</sub>                 | 1        | -     | 6.8              | 0    | 0    |                                                      |
| Z14  | (communications control<br>signal (output)) | $0000_{H}$ to FFFF <sub>H</sub>               | 1        | -     | 6_ 18<br>6_20    | 0    | 0    |                                                      |
| Z50  | Third last information on alarm             | 0.00 to 655.35                                | 0.01     | Hz    | 6_00             | 0    | 0    |                                                      |
|      | (output frequency)                          |                                               |          |       |                  | _    | -    |                                                      |
| Z51  | (output current)                            | 0.00 to 9999                                  | Variable | A     | 6_07             | 0    | 0    | FGI                                                  |
|      |                                             | 0.00 to 655.35                                | 0.01     | A     | 6_07             | 0    | 0    | RTU<br>(inverter capacity<br>22kW (30HP) or<br>less) |
|      |                                             | 0.0 to 5000.0                                 | 0.1      | A     | 6_07             | ×    | 0    | RTU<br>(inverter capacity<br>30kW (40HP) or<br>more) |
| Z52  | (output voltage)                            | 0 to 1000                                     | 1        | V     | 5_ <i>02</i>     | 0    | 0    |                                                      |
| Z53  | (torque operation value)                    | -999 to 999                                   | 1        | %     | 6_03             | ×    | 0    |                                                      |
| Z54  | (set frequency)                             | 0.00 to 655.35                                | 0.01     | Hz    | 6_04             | 0    | 0    |                                                      |
| Z55  | (operation status)                          | $0000_{\text{H}}$ to $\text{FFFF}_{\text{H}}$ | 1        | -     | 5_05             | 0    | 0    |                                                      |
| Z56  | (cumulative operation time)                 | 0 to 65535                                    | 1        | h     | 6_07             | 0    | 0    |                                                      |
| Z57  | (number of startups)                        |                                               | 1        | Times | 6_08             | 0    | 0    |                                                      |
| Z58  | (DC link circuit voltage)                   |                                               | 1        | V     | 6_09             | 0    | 0    |                                                      |
| Z59  | (internal air temperature)                  |                                               | 1        | °C    | 5_ ID            | ×    | 0    |                                                      |
| Z60  | (heat sink temperature)                     | 0 to 255                                      | 1        | °C    | 5_ / /           | 0    | 0    |                                                      |
| Z61  | (control circuit terminal<br>(input))       | $0000_{H}$ to FFFF <sub>H</sub>               | 1        | -     | וחיום<br>ניו יוע | 0    | 0    |                                                      |
| Z62  | (control circuit terminal<br>(output))      | $0000_{H}$ to FFFF <sub>H</sub>               | 1        | -     | 5.4              | 0    | 0    |                                                      |
| Z63  | (communications control<br>signal (input))  | $0000_{H}$ to FFFF <sub>H</sub>               | 1        | -     | 6.6.             | 0    | 0    |                                                      |
| Z64  | (communications control signal (output))    | $0000_{H}$ to FFFF <sub>H</sub>               | 1        | _     | 5_ 18<br>5_20    | 0    | 0    |                                                      |

| Table 5 12 | Keypad-related function codes (Z codes) |  |
|------------|-----------------------------------------|--|
|            | Reypad-related function codes (2 codes) |  |

# 5.2 Data Formats

### 5.2.1 List of data format numbers

The following table shows the communications data format numbers for function code data. Create data according to the data format specifications described below. For data ranges and units, see "Chapter 9 Function Codes" of the FRENIC-Mini User's Manual (MEH446) or FRENIC-Eco User's Manual (MEH456). The "Support" column of the table indicates whether each function is supported by the respective models or not. O indicates the function is supported, and × indicates the function is not supported.

RTU and FGI in the Format number field mean the Modbus RTU protocol and the Fuji general-purpose inverter protocol, respectively.

| Code | Name                                                                                                                | Format             | Sup  | port |
|------|---------------------------------------------------------------------------------------------------------------------|--------------------|------|------|
| 0000 |                                                                                                                     | number             | Mini | Eco  |
| F00  | Data Protection                                                                                                     | [1]                | 0    | 0    |
| F01  | Frequency Command 1                                                                                                 | [1]                | 0    | 0    |
| F02  | Operation Method                                                                                                    | [1]                | 0    | 0    |
| F03  | Maximum Frequency                                                                                                   | [3]                | 0    | 0    |
| F04  | Base Frequency                                                                                                      | [3]                | 0    | 0    |
| F05  | Rated Voltage (at the base frequency)                                                                               | [1]                | 0    | 0    |
| F07  | Acceleration Time 1                                                                                                 | [12]               | 0    | 0    |
| F08  | Deceleration Time 1                                                                                                 | [12]               | 0    | 0    |
| F09  | Torque Boost                                                                                                        | [3]                | 0    | 0    |
| F10  | Electronic Thermal Simulator (Overload Detection for Motor<br>Protection) (Selection of motor cooling fan property) | [1]                | 0    | 0    |
| F11  | Electronic Thermal Simulator (Overload Detection for Motor<br>Protection) (Level)                                   | [24] (FGI)         | 0    | 0    |
|      |                                                                                                                     | [19] (RTU)         | 0    | 0    |
| F12  | Electronic Thermal Simulator (Overload Detection for Motor Protection) (Thermal time constant)                      | [3]                | 0    | 0    |
| F14  | Restart Mode after momentary Power Failure                                                                          | [1]                | 0    | 0    |
| F15  | Frequency Limiter (High)                                                                                            | [3]                | 0    | 0    |
| F16  | Frequency Limiter (Low)                                                                                             | [3]                | 0    | 0    |
| F18  | Bias (for Frequency command 1)                                                                                      | [6]                | 0    | 0    |
| F20  | DC Braking (Starting frequency)                                                                                     | [3]                | 0    | 0    |
| F21  | DC Braking (Braking level)                                                                                          | [1]                | 0    | 0    |
| F22  | DC Braking (Braking time)                                                                                           | [5]                | 0    | 0    |
| F23  | Starting Frequency                                                                                                  | [3]                | 0    | 0    |
| F25  | Stopping Frequency                                                                                                  | [3]                | 0    | 0    |
| F26  | Motor Sound (Carrier frequency)                                                                                     | [1] <sup>*</sup> 1 | 0    | 0    |
| F27  | Motor Sound (Sound tone)                                                                                            | [1]                | 0    | 0    |
| F29  | Analog Output [FMA] (Selection)                                                                                     | [1]                | ×    | 0    |
| F30  | Analog Output [FMA] (Voltage adjust)                                                                                | [1]                | 0    | 0    |
| F31  | Analog Output [FMA] (Function)                                                                                      | [1]                | 0    | 0    |
| F33  | Digital Output Signal Selection for [FMP] (Pulse rate)                                                              | [1]                | ×    | 0    |
| F34  | Digital Output signal Selection for [FMP] (Voltage adjust)                                                          | [1]                | ×    | 0    |
| F35  | Digital Output Signal Selection for [FMP] (Function)                                                                | [1]                | ×    | 0    |
| F37  | Load Selection/Auto Torque Boost/Auto Energy Saving<br>Operation                                                    | [1]                | 0    | 0    |
| F43  | Current Limiter (Operation condition)                                                                               | [1]                | 0    | 0    |
| F44  | Current Limiter (Limiting level)                                                                                    | [1]                | 0    | 0    |

 Table 5.13
 List of data format numbers (F codes)

| Code | Name                                                                                 |                    | Support |     |
|------|--------------------------------------------------------------------------------------|--------------------|---------|-----|
| 0000 |                                                                                      | number             | Mini    | Eco |
| F50  | Electronic Thermal Overload Relay (for braking resistor)<br>(Discharging capability) | [1] <sup>*</sup> 2 | 0       | ×   |
| F51  | Electronic Thermal Overload Relay (for braking resistor)<br>(Allowable average loss) | [7]                | 0       | ×   |

| Table 5 13 | List of data format numbers (F codes) (- to be c | ontinued -) |
|------------|--------------------------------------------------|-------------|
| 10010 0.10 |                                                  | jillinaca j |

<sup>\*</sup>1 The frequency of 0.75kHz will be treated as 0.

 $^{\ast}2~$  The value of 999 will be treated as 7FFF\_H.

| Code | Name                                             | Format     | Sup  | port |
|------|--------------------------------------------------|------------|------|------|
| 0000 |                                                  | number     | Mini | Eco  |
| E01  | Terminal Command Assignment to: [X1]             | [1]        | 0    | 0    |
| E02  | Terminal Command Assignment to: [X2]             | [1]        | 0    | 0    |
| E03  | Terminal Command Assignment to: [X3]             | [1]        | 0    | 0    |
| E04  | Terminal Command Assignment to: [X4]             | [1]        | ×    | 0    |
| E05  | Terminal Command Assignment to: [X5]             | [1]        | ×    | 0    |
| E10  | Acceleration Time 2                              | [12]       | 0    | ×    |
| E11  | Deceleration Time 2                              | [12]       | 0    | ×    |
| E20  | Status signal Assignment to: [Y1]                | [1]        | 0    | 0    |
| E21  | Status signal Assignment to: [Y2]                | [1]        | х    | 0    |
| E22  | Status signal Assignment to: [Y3]                | [1]        | ×    | 0    |
| E24  | Relay Contact Output [Y5A/C]                     | [1]        | ×    | 0    |
| E27  | Relay Contact Output [30A/B/C]                   | [1]        | 0    | 0    |
| E31  | Frequency Detection (FDT) (Detection level)      | [3]        | 0    | 0    |
| E34  | Overload Early Warning/Current Detection (Level) | [24] (FGI) | 0    | 0    |
|      |                                                  | [19] (RTU) | 0    | 0    |
| E35  | Overload Early Warning/Current Detection (Timer) | [5]        | 0    | 0    |
| E39  | Coefficient for Constant Feeding Rate Time       | [7]        | 0    | ×    |
| E40  | PID Display Coefficient A                        | [12]       | 0    | 0    |
| E41  | PID Display Coefficient B                        | [12]       | 0    | 0    |
| E43  | LED Monitor (Function)                           | [1]        | 0    | 0    |
| E45  | LCD Monitor (Item selection)                     | [1]        | ×    | 0    |
| E46  | LCD Monitor (Language selection)                 | [1]        | ×    | 0    |
| E47  | LCD Monitor (Contrast control)                   | [1]        | ×    | 0    |
| E48  | LED Monitor (Speed monitor item)                 | [1]        | 0    | 0    |
| E50  | Coefficient for Speed Indication                 | [5]        | 0    | 0    |
| E51  | Display Coefficient for Input Watt-hour Data     | [45]       | х    | 0    |
| E52  | Keypad (Menu display mode)                       | [1]        | 0    | 0    |
| E60  | Built-in Potentiometer (Function selection)      | [1]        | 0    | ×    |
| E61  | Analog Input Signal Selection for: [12]          | [1]        | 0    | 0    |
| E62  | Analog Input Signal Selection for: [C1]          | [1]        | 0    | 0    |
| E63  | Analog Input Signal Selection for: [V2]          | [1]        | ×    | 0    |
| E64  | Saving of the Digital Set Frequency              | [1]        | ×    | 0    |
| E65  | Command Loss Detection (Level)                   | [1] *1     | ×    | 0    |
| E80  | Detect Low Torque (Detection level)              | [1]        | ×    | 0    |
| E81  | Detect Low Torque (Timer)                        | [5]        | ×    | 0    |
| E98  | Terminal Command Assignment to: [FWD]            | [1]        | 0    | 0    |
| E99  | Terminal Command Assignment to: [REV]            | [1]        | 0    | 0    |

\*1 999 is handled as  $7FFF_{H}$ .

| Code | Name                                                               | Format | Sup  | port |
|------|--------------------------------------------------------------------|--------|------|------|
| 0000 |                                                                    | number | Mini | Eco  |
| C01  | Jump Frequency 1                                                   | [3]    | 0    | 0    |
| C02  | Jump Frequency 2                                                   | [3]    | 0    | 0    |
| C03  | Jump Frequency 3                                                   | [3]    | 0    | 0    |
| C04  | Jump Frequency (Hysteresis)                                        | [3]    | 0    | 0    |
| C05  | Multistep Frequency Settings 1                                     | [5]    | 0    | 0    |
| C06  | Multistep Frequency Settings 2                                     | [5]    | 0    | 0    |
| C07  | Multistep Frequency Settings 3                                     | [5]    | 0    | 0    |
| C08  | Multistep Frequency Settings 4                                     | [5]    | 0    | 0    |
| C09  | Multistep Frequency Settings 5                                     | [5]    | 0    | 0    |
| C10  | Multistep Frequency Settings 6                                     | [5]    | 0    | 0    |
| C11  | Multistep Frequency Settings 7                                     | [5]    | 0    | 0    |
| C20  | Jogging Frequency                                                  | [5]    | 0    | ×    |
| C21  | Timer Operation                                                    | [1]    | 0    | ×    |
| C30  | Frequency Command 2                                                | [1]    | 0    | 0    |
| C32  | Analog Input Adjustment (Gain for terminal input [12])             | [5]    | 0    | 0    |
| C33  | Analog Input Adjustment (Filter time constant)                     | [5]    | 0    | 0    |
| C34  | Analog Input Adjustment (Gain base point)                          | [5]    | 0    | 0    |
| C37  | Analog Input Adjustment (Gain for terminal input [C1])             | [5]    | 0    | 0    |
| C38  | Analog Input Adjustment (Filter time constant)                     | [5]    | 0    | 0    |
| C39  | Analog Input Adjustment (Gain base point)                          | [5]    | 0    | 0    |
| C42  | Analog Input Adjustment (Gain for terminal input [V2])             | [5]    | ×    | 0    |
| C43  | Analog Input Adjustment (Filter time constant)                     | [5]    | ×    | 0    |
| C44  | Analog Input Adjustment (Gain base point)                          | [5]    | ×    | 0    |
| C50  | Bias (Frequency command 1) (Bias base point)                       | [5]    | 0    | 0    |
| C51  | Bias (PID command 1) (Bias value)                                  | [6]    | 0    | 0    |
| C52  | Bias (PID command 1) (Bias base point)                             | [5]    | 0    | 0    |
| C53  | Selection of Normal/Inverse Operation for the Frequcency Command 1 | [1]    | ×    | 0    |

Table 5.15 List of data format numbers (C codes)

| Table 5.16 | List of data format numbers (P codes) |
|------------|---------------------------------------|
|------------|---------------------------------------|

| Code | Code Name                      |                      | Format     | Sup  | port |
|------|--------------------------------|----------------------|------------|------|------|
| Couo |                                |                      | number     | Mini | Eco  |
| P01  | Motor (No. of the poles)       |                      | [1]        | ×    | 0    |
| P02  | Motor (Rated capacity)         | When P99 = 0, 3 or 4 | [11]       | 0    | 0    |
|      |                                | When P99 = 1         | [25]       | 0    | 0    |
| P03  | Motor (Rated current)          |                      | [24] (FGI) | 0    | 0    |
|      |                                |                      | [19] (RTU) | 0    | 0    |
| P04  | Motor (Auto-tuning)            |                      | [21]       | ×    | 0    |
| P06  | Motor (No load current)        |                      | [24] (FGI) | ×    | 0    |
|      |                                |                      | [19] (RTU) | ×    | 0    |
| P07  | Motor (%R1)                    |                      | [5]        | ×    | 0    |
| P08  | Motor (%X)                     |                      | [5]        | ×    | 0    |
| P09  | Motor (Slip compensation gain) |                      | [3]        | 0    | ×    |
| P99  | Motor Selection                |                      | [1]        | 0    | 0    |

| Code | Name                                                         | Format             | Support |     |
|------|--------------------------------------------------------------|--------------------|---------|-----|
|      |                                                              | number             | Mini    | Eco |
| H03  | Data Initializing (Data reset)                               | [1]                | 0       | 0   |
| H04  | Auto-reset (Times)                                           | [1]                | 0       | 0   |
| H05  | Auto-reset (Reset interval)                                  | [3]                | 0       | 0   |
| H06  | Cooling Fan Control                                          | [1]                | 0       | 0   |
| H07  | Acceleration/Deceleration Pattern                            | [1]                | 0       | 0   |
| H09  | Start Mode (Synchronization mode)                            | [1]                | ×       | 0   |
| H11  | Deceleration Mode                                            | [1]                | ×       | 0   |
| H12  | Instantaneous Overcurrent Limiting                           | [1]                | 0       | 0   |
| H13  | Auto-restart (Restart time)                                  | [3]                | ×       | 0   |
| H14  | Auto-restart (Frequency fall rate)                           | [5] *1             | ×       | 0   |
| H15  | Auto-restart (Holding DC voltage)                            | [1]                | ×       | 0   |
| H16  | Auto-restart (Allowable momentary power failure time)        | [3] *1             | ×       | 0   |
| H17  | Start Mode (Synchronous frequency)                           | [5]                | ×       | 0   |
| H26  | PTC Thermistor Input                                         | [1]                | 0       | 0   |
| H27  | PTC Thermistor Input (Level)                                 | [5]                | 0       | 0   |
| H30  | Communication Link Operation (Function selection)            | [1]                | 0       | 0   |
| H42  | Capacity of DC Link Bus Capacitor                            | [1]                | 0       | 0   |
| H43  | Accumulated Run Time of Cooling Fan                          | [1]                | 0       | 0   |
| H47  | Initial Capacity of DC Link Bus Capacitor                    | [1]                | ×       | 0   |
| H48  | Accumulated Run Time of Capacitors on the PCB                | [1]                | ×       | 0   |
| H49  | Pick up Start Mode (Pick up start time)                      | [3]                | ×       | 0   |
| H50  | Non-linear V/f Pattern (Frequency)                           | [3]                | 0       | 0   |
| H51  | Non-linear V/f Pattern (Voltage)                             | [1]                | 0       | 0   |
| H54  | ACC/DEC Time (Jogging operation)                             | [12]               | 0       | ×   |
| H56  | Deceleration Time for Forced Stop                            | [12]               | ×       | 0   |
| H63  | Low Limiter (Select)                                         | [1]                | ×       | 0   |
| H64  | Low Limiter (Specify the lower limiting frequency)           | [3]                | 0       | 0   |
| H69  | Automatic Deceleration                                       | [1]                | 0       | 0   |
| H70  | Overload Prevention Control (Frequency drop rate)            | [5] <sup>*</sup> 1 | 0       | 0   |
| H71  | Deceleration Characteristics                                 | [1]                | ×       | 0   |
| H80  | Gain for Suppression of Output Current Fluctuation for Motor | [5]                | 0       | 0   |
| H86  | Reserved. *2                                                 | [1]                | ×       | 0   |
| H87  | Reserved. *2                                                 | [1]                | ×       | 0   |
| H88  | Reserved. *2                                                 | [3]                | ×       | 0   |
| H89  | Reserved. *2                                                 | [1]                | ×       | 0   |
| H90  | Reserved. *2                                                 | [1]                | ×       | 0   |
| H91  | Reserved. *2                                                 | [1]                | ×       | 0   |
| H92  | Continue to Run (P component: gain)                          | [7] *1             | ×       | 0   |
| H93  | Continue to Run (I component: time)                          | [7] *1             | ×       | 0   |
| H94  | Accumulated Run Time of Motor                                | [1]                | ×       | 0   |
| H95  | DC Braking (Braking response mode)                           | [1]                | ×       | 0   |
| H96  | STOP Key Priority/Start Check Function                       | [1]                | 0       | 0   |
| H97  | Clear Alarm Data                                             | [1]                | 0       | 0   |
| H98  | Protection/Maintenance Function (Specify operation)          | [1]                | 0       | 0   |
| 1190 |                                                              | ניז                | ~       | ~   |

| Table 5.17 | List of data format numbers (H codes) |
|------------|---------------------------------------|
| 10010 0.11 |                                       |

 $^{*}1~$  The value of 999 will be treated as  $7FF_{H}.$ 

<sup>\*</sup>2 The H86 through H91 are displayed, but they are reserved for particular manufacturers. Unless otherwise specified, do not access these function codes.

| Code | Name                                              | Format | Support |     |
|------|---------------------------------------------------|--------|---------|-----|
|      |                                                   | number | Mini    | Eco |
| J01  | PID Control                                       | [1]    | 0       | 0   |
| J02  | PID Control (Remote process command)              | [1]    | 0       | 0   |
| J03  | PID Control P (Gain)                              | [7]    | 0       | 0   |
| J04  | PID Control I (Integration time)                  | [3]    | 0       | 0   |
| J05  | PID Control D (Differentiation time)              | [5]    | 0       | 0   |
| J06  | PID Control (Feedback filter)                     | [3]    | 0       | 0   |
| J10  | PID Control (Anti reset windup)                   | [1]    | ×       | 0   |
| J11  | PID Control (Select alarm output)                 | [1]    | ×       | 0   |
| J12  | PID Control (High limit alarm (AH))               | [2]    | ×       | 0   |
| J13  | PID Control (Low limit alarm (AL))                | [2]    | ×       | 0   |
| J15  | PID Control (Stop frequency for slow flowrate)    | [1]    | ×       | 0   |
| J16  | PID Control (Elapsed stop time for slow flowrate) | [1]    | ×       | 0   |
| J17  | PID Control (Starting frequency)                  | [1]    | ×       | 0   |
| J18  | PID Control (Upper limit of PID process output)   | [1] *1 | ×       | 0   |
| J19  | PID Control (Lower limit of PID process output)   | [1] *1 | ×       | 0   |
| J21  | Dew Condensation Protection (Duty)                | [1]    | ×       | 0   |
| J22  | Commercial Line Switching Sequence                | [1]    | ×       | 0   |

Table 5.18 List of data format numbers (J codes)

\*1 999 is handled as  $7FFF_{H}$ .

| Code | Name                                                                 | Format | Support |     |
|------|----------------------------------------------------------------------|--------|---------|-----|
| 0000 |                                                                      | number | Mini    | Eco |
| y01  | RS485 Communication (Standard) (Station address)                     | [1]    | 0       | 0   |
| y02  | RS485 Communication (Standard) (Mode selection on no response error) | [1]    | 0       | 0   |
| y03  | RS485 Communication (Standard) (Timer)                               | [3]    | 0       | 0   |
| y04  | RS485 Communication (Standard) (Baud rate)                           | [1]    | 0       | 0   |
| y05  | RS485 Communication (Standard) (Data length)                         | [1]    | 0       | 0   |
| y06  | RS485 Communication (Standard) (Parity check)                        | [1]    | 0       | 0   |
| y07  | RS485 Communication (Standard) (Stop bits)                           | [1]    | 0       | 0   |
| y08  | RS485 Communication (Standard) (No response error detection time)    | [1]    | 0       | 0   |
| y09  | RS485 Communication (Standard) (Response interval)                   | [5]    | 0       | 0   |
| y10  | RS485 Communication (Standard) (Protocol selection)                  | [1]    | 0       | 0   |
| y11  | RS485 Communication (Option) (Station address)                       | [1]    | ×       | 0   |
| y12  | RS485 Communication (Option) (Mode selection on no response error)   | [1]    | ×       | 0   |
| y13  | RS485 Communication (Option) (Timer)                                 | [3]    | ×       | 0   |
| y14  | RS485 Communication (Option) (Baud rate)                             | [1]    | ×       | 0   |
| y15  | RS485 Communication (Option) (Data length)                           | [1]    | ×       | 0   |
| y16  | RS485 Communication (Option) (Parity check)                          | [1]    | ×       | 0   |
| y17  | RS485 Communication (Option) (Stop bits)                             | [1]    | ×       | 0   |
| y18  | RS485 Communication (Option) (No response error detection time)      | [1]    | ×       | 0   |
| y19  | RS485 Communication (Option) (Response interval)                     | [5]    | ×       | 0   |
| Y20  | RS485 Communication (Option) (Protocol selection)                    | [1]    | ×       | 0   |
| y98  | Bus Link Function                                                    | [1]    | ×       | 0   |
| y99  | Loader Link Function                                                 | [1]    | 0       | 0   |

| Table 5.19 | List of data format numbers (y codes) |
|------------|---------------------------------------|
| 10010 0.10 |                                       |

| Table 5.20 | List of data format numbers (S codes) |
|------------|---------------------------------------|
|------------|---------------------------------------|

| Code | Name                     | Format | Support |     |
|------|--------------------------|--------|---------|-----|
|      |                          | number | Mini    | Eco |
| S01  | Frequency command (p.u.) | [29]   | 0       | 0   |
| S05  | Frequency command        | [22]   | 0       | 0   |
| S06  | Operation command        | [14]   | 0       | 0   |
| S07  | Universal D0             | [15]   | ×       | 0   |
| S08  | Acceleration time        | [3]    | 0       | 0   |
| S09  | Deceleration time        | [3]    | 0       | 0   |
| S12  | Universal A0             | [29]   | ×       | 0   |
| S13  | PID command              | [29]   | 0       | 0   |
| S14  | Alarm reset command      | [1]    | 0       | 0   |

| Code | Name                                              | Format     | Support |     |
|------|---------------------------------------------------|------------|---------|-----|
| 0000 |                                                   | number     | Mini    | Eco |
| M01  | Frequency command (p.u.) (final command)          | [29]       | 0       | 0   |
| M05  | Frequency command (final command)                 | [22]       | 0       | 0   |
| M06  | Output frequency 1 (p.u.)                         | [29]       | 0       | 0   |
| M07  | Output torque                                     | [6]        | ×       | 0   |
| M09  | Output frequency 1                                | [23] (FGI) | 0       | 0   |
|      |                                                   | [22] (RTU) | 0       | 0   |
| M10  | Input power                                       | [5]        | 0       | 0   |
| M11  | Output current effective value                    | [5]        | 0       | 0   |
| M12  | Output voltage effective value                    | [3]        | 0       | 0   |
| M13  | Operation command (final command)                 | [14]       | 0       | 0   |
| M14  | Operation status                                  | [16]       | 0       | 0   |
| M15  | General-purpose output terminal information       | [15]       | 0       | 0   |
| M16  | Latest alarm contents                             | [10]       | 0       | 0   |
| M17  | Last alarm contents                               | [10]       | 0       | 0   |
| M18  | Second last alarm contents                        | [10]       | 0       | 0   |
| M19  | Third last alarm contents                         | [10]       | 0       | 0   |
| M20  | Cumulative operation time                         | [1]        | 0       | 0   |
| M21  | DC link circuit voltage                           | [1]        | 0       | 0   |
| M23  | Model code                                        | [17]       | 0       | 0   |
| M24  | Capacity code When P99 = 0, 3 or 4                | [11]       | 0       | 0   |
|      | When P99 = 1                                      | [25]       | 0       | 0   |
| M25  | ROM version                                       | [35]       | 0       | 0   |
| M26  | Transmission error transaction code               | [20]       | 0       | 0   |
| M27  | Frequency command on alarm (p.u.) (final command) | [29]       | 0       | 0   |
| M31  | Frequency command on alarm (final command)        | [22]       | 0       | 0   |
| M32  | Output frequency 1 on alarm (p.u.)                | [29]       | 0       | 0   |
| M33  | Output torque on alarm                            | [6]        | ×       | 0   |
| M35  | Output frequency 1 on alarm                       | [23] (FGI) | 0       | 0   |
|      |                                                   | [22] (RTU) | 0       | 0   |
| M36  | Input power on alarm                              | [5]        | 0       | 0   |
| M37  | Output current effective value on alarm           | [5]        | 0       | 0   |
| M38  | Output voltage effective value on alarm           | [3]        | 0       | 0   |
| M39  | Operation command on alarm                        | [14]       | 0       | 0   |

Table 5.21 List of data format numbers (M codes)

| Code | Name                                                 | Format<br>number | Support |     |
|------|------------------------------------------------------|------------------|---------|-----|
|      |                                                      |                  | Mini    | Eco |
| M40  | Operation status on alarm                            | [16]             | 0       | 0   |
| M41  | General-purpose output terminal information on alarm | [15]             | 0       | 0   |
| M42  | Cumulative operation time on alarm                   | [1]              | 0       | 0   |
| M43  | DC link circuit voltage on alarm                     | [1]              | 0       | 0   |
| M44  | Inverter internal air temperature on alarm           | [1]              | х       | 0   |
| M45  | Heat sink temperature on alarm                       | [1]              | 0       | 0   |
| M46  | Life of main circuit capacitor                       | [3]              | 0       | 0   |
| M47  | Life of PC board electrolytic capacitor              | [1]              | 0       | 0   |
| M48  | Life of heat sink                                    | [1]              | 0       | 0   |
| M49  | Input terminal voltage ([12])                        | [29]             | 0       | 0   |
| M50  | Input terminal current ([C1])                        | [29]             | 0       | 0   |
| M54  | Input terminal voltage ([V2])                        | [29]             | ×       | 0   |
| M61  | Inverter internal air temperature                    | [1]              | х       | 0   |
| M62  | Heat sink temperature                                | [1]              | 0       | 0   |
| M63  | Load rate                                            | [6]              | ×       | 0   |
| M64  | Motor output                                         | [6]              | ×       | 0   |
| M65  | Motor output on alarm                                | [6]              | ×       | 0   |
| M68  | PID final command                                    | [29]             | 0       | 0   |
| M69  | Inverter rated current                               | [24] (FGI)       | 0       | 0   |
|      |                                                      | [19] (RTU)       | 0       | 0   |
| M70  | Operation status 2                                   | [44]             | 0       | 0   |
| M71  | Input terminal information                           | [14]             | 0       | 0   |
| M72  | PID feedback                                         | [29]             | ×       | 0   |
| M73  | PID output                                           | [29]             | ×       | 0   |

| Table 5.21 | List of data format numbers (M codes) (Continued) |
|------------|---------------------------------------------------|

| Code | Name                                                            | Format     | Support |     |
|------|-----------------------------------------------------------------|------------|---------|-----|
| oouc |                                                                 | number     | Mini    | Eco |
| W01  | Operation status                                                | [16]       | 0       | 0   |
| W02  | Frequency command                                               | [22]       | 0       | 0   |
| W03  | Output frequency (before slip compensation)                     | [22]       | 0       | 0   |
| W04  | Output frequency (after slip compensation)                      | [22]       | 0       | ×   |
| W05  | Output current                                                  | [24] (FGI) | 0       | 0   |
|      |                                                                 | [19] (RTU) | 0       | 0   |
| W06  | Output voltage                                                  | [3]        | 0       | 0   |
| W07  | Torque operation value                                          | [2]        | ×       | 0   |
| W08  | Motor speed                                                     | [37]       | ×       | 0   |
| W09  | Load rotation speed                                             | [37]       | 0       | 0   |
| W10  | Line speed                                                      | [37]       | 0       | 0   |
| W11  | PID process command                                             | [12]       | 0       | 0   |
| W12  | PID feedback value                                              | [12]       | 0       | 0   |
| W16  | Motor speed set value                                           | [37]       | ×       | 0   |
| W17  | Load speed set value                                            | [37]       | 0       | 0   |
| W18  | Line speed set value                                            | [37]       | 0       | ×   |
| W19  | Constant feed time set value                                    | [37]       | 0       | ×   |
| W20  | Constant feed time                                              | [37]       | 0       | ×   |
| W21  | Input power                                                     | [24]       | 0       | 0   |
| W22  | Motor output power                                              | [24]       | ×       | 0   |
| W23  | Load factor                                                     | [2]        | ×       | 0   |
| W27  | Timer operation remaining time                                  | [1]        | 0       | ×   |
| W28  | Operation command source                                        | [1]        | 0       | 0   |
| W29  | Frequency, PID command source                                   | [1]        | 0       | 0   |
| W30  | Speed (unit: %)                                                 | [3]        | ×       | 0   |
| W31  | Speed setting (unit: %)                                         | [3]        | ×       | 0   |
| W32  | PID output                                                      | [12]       | ×       | 0   |
| W33  | Analog input monitori                                           | [12]       | ×       | 0   |
| W40  | Control circuit terminal (input)                                | [43]       | 0       | 0   |
| W41  | Control circuit terminal (output)                               | [15]       | 0       | 0   |
| W42  | Communications control signal (input)                           | [14]       | 0       | 0   |
| W43  | Communications control signal (output)                          | [15]       | 0       | 0   |
| W44  | Terminal [12] input voltage                                     | [4]        | 0       | 0   |
| W45  | Terminal [C1] input current                                     | [4]        | 0       | 0   |
| W46  | FMA output voltage                                              | [3]        | 0       | 0   |
| W47  | FMP output voltage                                              | [3]        | ×       | 0   |
| W48  | FMP output frequency                                            | [1]        | ×       | 0   |
| W49  | Terminal [V2] input voltage                                     | [4]        | ×       | 0   |
| W50  | FMA output current                                              | [3]        | ×       | 0   |
| W70  | Cumulative operation time                                       | [1]        | 0       | 0   |
| W71  | DC link circuit voltage                                         | [1]        | 0       | 0   |
| W72  | Maximum temperature of internal air                             | [1]        | ×       | 0   |
| W73  | Maximum temperature of heat sink                                | [1]        | 0       | 0   |
| W74  | Maximum effective current value                                 | [24] (FGI) | 0       | 0   |
|      |                                                                 | [19] (RTU) |         |     |
| W75  | Capacitor of the DC bus capacitor                               | [3]        | 0       | 0   |
| W76  | Cumulative operation time of electrolytic capacitor on PC board | [1]        | 0       | 0   |

| Table 5.22 | List of data format numbers |
|------------|-----------------------------|
|            |                             |

| Code | Name                                     | Format<br>number | Support |     |
|------|------------------------------------------|------------------|---------|-----|
| 0000 |                                          |                  | Mini    | Eco |
| W77  | Cumulative operation time of cooling fan | [1]              | 0       | 0   |
| W78  | Number of startups                       | [1]              | 0       | 0   |
| W79  | Cumulative operation time of motor       | [1]              | ×       | 0   |
| W80  | Standard fan life                        | [1]              | ×       | 0   |
| W81  | Integral electric power consumption      | [45]             | ×       | 0   |
| W82  | Integral electric power consumption data | [45]             | ×       | 0   |
| W83  | Number of RS485 Ch1 errors               | [1]              | 0       | 0   |
| W84  | Contents of RS485 Ch1 error              | [20]             | 0       | 0   |
| W85  | Number of RS485 Ch2 errors               | [1]              | ×       | 0   |
| W87  | Inverter's ROM version                   | [35]             | 0       | 0   |
| W89  | Remote/multi-function keypad ROM version | [35]             | 0       | 0   |
| W90  | Option ROM version                       | [35]             | ×       | 0   |
| W94  | Content of RS485 Ch2 error               | [20]             | ×       | 0   |
| W95  | Number of option communications errors   | [1]              | ×       | 0   |
| W96  | Content of option communications error   | [1]              | ×       | 0   |

Table 5.22 List of data format numbers (Continued)

| Code | Name                                           | Format     | Sup  | port |
|------|------------------------------------------------|------------|------|------|
| Couc | Name                                           | number     | Mini | Eco  |
| X00  | Alarm history (latest)                         | [41]       | 0    | 0    |
| X01  | Multiple alarm 1 (latest)                      | [40]       | 0    | 0    |
| X02  | Multiple alarm 2 (latest)                      | [40]       | 0    | 0    |
| X03  | Sub-code                                       | [1]        | ×    | 0    |
| X05  | Alarm history (last)                           | [41]       | 0    | 0    |
| X06  | Multiple alarm 1 (last)                        | [40]       | 0    | 0    |
| X07  | Multiple alarm 2 (last)                        | [40]       | 0    | 0    |
| X08  | Sub-code                                       | [1]        | ×    | 0    |
| X10  | Alarm history (second last)                    | [41]       | 0    | 0    |
| X11  | Multiple alarm 1 (second last)                 | [40]       | 0    | 0    |
| X12  | Multiple alarm 2 (second last)                 | [40]       | 0    | 0    |
| X13  | Sub-code                                       | [1]        | ×    | 0    |
| X15  | Alarm history (third last)                     | [41]       | 0    | 0    |
| X16  | Multiple alarm 1 (third last)                  | [40]       | 0    | 0    |
| X17  | Multiple alarm 2 (third last)                  | [40]       | 0    | 0    |
| X18  | Sub-code                                       | [1]        | ×    | 0    |
| X20  | Latest information on alarm (output frequency) | [22]       | 0    | 0    |
| X21  | (output current)                               | [24] (FGI) | 0    | 0    |
|      |                                                | [19] (RTU) | 0    | 0    |
| X22  | (output voltage)                               | [1]        | 0    | 0    |
| X23  | (torque operation value)                       | [6]        | ×    | 0    |
| X24  | (set frequency)                                | [22]       | 0    | 0    |
| X25  | (operation status)                             | [16]       | 0    | 0    |
| X26  | (cumulative operation time)                    | [1]        | 0    | 0    |
| X27  | (number of startups)                           | [1]        | 0    | 0    |
| X28  | (DC link circuit voltage)                      | [1]        | 0    | 0    |
| X29  | (internal air temperature)                     | [1]        | ×    | 0    |
| X30  | (heat sink temperature)                        | [1]        | 0    | 0    |
| X31  | (control circuit terminal (input))             | [43]       | 0    | 0    |
| X32  | (control circuit terminal (output))            | [15]       | 0    | 0    |
| X33  | (communications control signal (input))        | [14]       | 0    | 0    |
| X34  | (communications control signal (output))       | [15]       | 0    | 0    |
| X60  | Last information on alarm (output frequency)   | [22]       | 0    | 0    |
| X61  | (output current)                               | [24] (FGI) | 0    | 0    |
|      |                                                | [19] (RTU) | 0    | 0    |
| X62  | (output voltage)                               | [1]        | 0    | 0    |
| X63  | (torque operation value)                       | [6]        | ×    | 0    |
| X64  | (set frequency)                                | [22]       | 0    | 0    |
| X65  | (operation status)                             | [16]       | 0    | 0    |
| X66  | (cumulative operation time)                    | [1]        | 0    | 0    |
| X67  | (number of startups)                           | [1]        | 0    | 0    |
| X68  | (DC link circuit voltage)                      | [1]        | 0    | 0    |
| X69  | (internal air temperature)                     | [1]        | ×    | 0    |
| X70  | (heat sink temperature)                        | [1]        | 0    | 0    |
| X71  | (control circuit terminal (input))             | [43]       | 0    | 0    |
| X72  | (control circuit terminal (output))            | [15]       | 0    | 0    |
| X73  | (communications control signal (input))        | [14]       | 0    | 0    |
| X74  | (communications control signal (output))       | [15]       | 0    | 0    |

| Table 5.23 List of data format numbers ( | (X codes) |
|------------------------------------------|-----------|
|------------------------------------------|-----------|

| Code | Name                             |                                | Format     | Sup  | port |
|------|----------------------------------|--------------------------------|------------|------|------|
| 0000 |                                  |                                | number     | Mini | Eco  |
| Z00  | Second last information on alarm | (output frequency)             | [22]       | 0    | 0    |
| Z01  |                                  | (output current)               | [24] (FGI) | 0    | 0    |
|      |                                  |                                | [19] (RTU) | 0    | 0    |
| Z02  |                                  | (output voltage)               | [1]        | 0    | 0    |
| Z03  |                                  | (torque operation value)       | [6]        | ×    | 0    |
| Z04  |                                  | (set frequency)                | [22]       | 0    | 0    |
| Z05  |                                  | (operation status)             | [16]       | 0    | 0    |
| Z06  | (6                               | cumulative operation time)     | [1]        | 0    | 0    |
| Z07  |                                  | (number of startups)           | [1]        | 0    | 0    |
| Z08  |                                  | (DC link circuit voltage)      | [1]        | 0    | 0    |
| Z09  |                                  | [1]                            | ×          | 0    |      |
| Z10  |                                  | [1]                            | 0          | 0    |      |
| Z11  | (con                             | trol circuit terminal (input)) | [43]       | 0    | 0    |
| Z12  | (contr                           | [15]                           | 0          | 0    |      |
| Z13  | (communicat                      | tions control signal (input))  | [14]       | 0    | 0    |
| Z14  | (communicatio                    | ons control signal (output))   | [15]       | 0    | 0    |
| Z50  | Third last information on alarm  | (output frequency)             | [22]       | 0    | 0    |
| Z51  |                                  | (output current)               | [24] (FGI) | 0    | 0    |
|      |                                  |                                | [19] (RTU) | 0    | 0    |
| Z52  |                                  | (output voltage)               | [1]        | 0    | 0    |
| Z53  |                                  | (torque operation value)       | [6]        | ×    | 0    |
| Z54  |                                  | (set frequency)                | [22]       | 0    | 0    |
| Z55  |                                  | (operation status)             | [16]       | 0    | 0    |
| Z56  | (0                               | cumulative operation time)     | [1]        | 0    | 0    |
| Z57  |                                  | (number of startups)           | [1]        | 0    | 0    |
| Z58  | ]                                | (DC link circuit voltage)      | [1]        | 0    | 0    |
| Z59  |                                  | (internal air temperature)     | [1]        | ×    | 0    |
| Z60  |                                  | (heat sink temperature)        | [1]        | 0    | 0    |
| Z61  | (con                             | trol circuit terminal (input)) | [43]       | 0    | 0    |
| Z62  | (contr                           | ol circuit terminal (output))  | [15]       | 0    | 0    |
| Z63  | (communicat                      | tions control signal (input))  | [14]       | 0    | 0    |
| Z64  | (communicatio                    | ons control signal (output))   | [15]       | 0    | 0    |

| Table 5.24 | List of data format numbers (Z codes) |
|------------|---------------------------------------|
|            |                                       |

## 5.2.2 Data format specifications

The data in the data fields of a communications frame are 16 bits long, binary data, as shown below.

|                                                                                                                                                                                                          | 2            | 2 1 0                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------|
| 15 14 13 12 11 10 9 8 7 6 5 4                                                                                                                                                                            | 5            | 2 1 0                           |
| For the convenience of description, 16-bit data is expressed<br>upper-order byte (eight bits from 15 to 8) and one lower-order byte<br>For example, the following data is 1234H in hexadecimal and expre | (eight bi    | its from 7 to 0).               |
| 0 0 0 1 0 0 1 0 0 0 1 1                                                                                                                                                                                  | 0            | 1 0 0                           |
| Data format [1] Integer data (positive): Minimum step 1<br>(Example) When F05 (base) frequency voltage = 200V<br>200 = 00C8 <sub>H</sub> Consequently                                                    | ⇒            | 00 <sub>H</sub> C8 <sub>H</sub> |
| Data format [2] Integer data (positive/negative): Minimum step<br>(Example) When the value is -20<br>-20 = FFEC <sub>H</sub> Consequently,                                                               | 1<br>⇒       | FF <sub>H</sub> EC <sub>H</sub> |
| Data format [3] Decimal data (positive): Minimum step 0.1<br>(Example) When F17 (gain frequency set signal) = $100.0\%$<br>$100.0 \times 10 = 1000 = 03E8_{H}$ Consequently,                             | ⇒            | 03 <sub>н</sub> Е8 <sub>н</sub> |
| Data format [4] Decimal data (positive/negative): Minimum ster<br>(Example) When C31 (analog input offset adjustment) = $-5.0\%$<br>$-5.0 \times 10 = -50 = FFCE_{H}$ Consequently,                      | ep 0.1<br>⇒  | FF <sub>H</sub> CE <sub>H</sub> |
| Data formant [5] Decimal data (positive): Minimum step 0.01<br>(Example) C05 (multistep frequency) = 50.25Hz<br>50.25 x 100 =5025 =13A1 <sub>H</sub> Consequently,                                       | ⇒            | 13 <sub>H</sub> A1 <sub>H</sub> |
| Data format [6] Decimal data (positive/negative): Minimum ster<br>(Example) When M07 (actual torque value) = -85.38%<br>-85.38 x 100 =-8538 = DEA6 <sub>H</sub> Consequently,                            | ep 0.01<br>⇒ | DEн А6н                         |

FBн

2Eн

Data format [7] Decimal data (positive): Minimum step 0.001 (Example) When F51( electronic thermal (permissible loss)) = 0.105kW 00н 69<sub>H</sub>  $0.105 \times 1000 = 105 = 0069_{H}$  Consequently,  $\Rightarrow$ 

 $-1.234 \times 1000 = -1234 = FB2E_{H}$  Consequently,  $\Rightarrow$ 

Data format [10] Alarm codes

Description Code Description Code 667 0 No alarm 22 Braking resistor overheat ו שב 1 Overcurrent (during 23 Motor overload DL I acceleration) 25 2 DEZ DLU Overcurrent (during Inverter overload deceleration) DEB 31 3 Overcurrent (during Memory error Er 1 constant speed operation) EF 32 Erz 5 Ground fault Keypad communications error ו ענ CPU error 6 Overvoltage (during 33 E-3 acceleration) E--4 7 DUP 34 Overvoltage (during Option communications deceleration) error DUB Overvoltage (during 35 E-5 8 Option error constant speed operation or stopping) 10 Undervoltage LU 36 Er-5 Run operation error 11 Input phase loss 37 Tuning error Er 7 רוו ל 38 Fuse blown FU/S 14 RS485 Ch1 Er-8 communications error Charging circuit fault FbF DPL 46 Output phaseloss 16 17 Heat sink overheat DH I 51 ErF Data save error on insufficient voltage בווה 18 External alarm 53 RS485 Ch2 E-P communications error 19 Internal air overheat DH3 54 LSI error (power PCB) Erk רייה' 20 Motor protection (PTC thermistor)

Table 5.25 List of alarm codes

| 1 | Example | ) In tł        | he case  | of over | voltage ( | durina | acceleration | ۱ ( | 1.11 | ٨  |  |
|---|---------|----------------|----------|---------|-----------|--------|--------------|-----|------|----|--|
|   |         | <i>)</i> III U | iie case | 01 0101 | iulaye (  | uunny  | acceleration | , ( |      | ') |  |

 $6 = 0006_{H}$  Consequently,

00н 06н Data format [11] Capacity code (unit: kW)

As shown in the table below, the capacity (kW) is multiplied by 100.

| Table 5.26 Capacities and data |      |               |       |               |       |  |  |  |  |  |
|--------------------------------|------|---------------|-------|---------------|-------|--|--|--|--|--|
| Capacity (kW)                  | Data | Capacity (kW) | Data  | Capacity (kW) | Data  |  |  |  |  |  |
| 0.06                           | 6    | 22            | 2200  | 280           | 28000 |  |  |  |  |  |
| 0.1                            | 10   | 30            | 3000  | 315           | 31500 |  |  |  |  |  |
| 0.2                            | 20   | 37            | 3700  | 355           | 35500 |  |  |  |  |  |
| 0.4                            | 40   | 45            | 4500  | 400           | 40000 |  |  |  |  |  |
| 0.75                           | 75   | 55            | 5500  | 450           | 45000 |  |  |  |  |  |
| 1.5                            | 150  | 75            | 7500  | 500           | 50000 |  |  |  |  |  |
| 2.2                            | 220  | 90            | 9000  | 550           | 55000 |  |  |  |  |  |
| 3.7                            | 370  | 110           | 11000 | 600           | 60000 |  |  |  |  |  |
| 5.5                            | 550  | 132           | 13200 | 650           | 60650 |  |  |  |  |  |
| 7.5                            | 750  | 160           | 16000 | 700           | 60700 |  |  |  |  |  |
| 11                             | 1100 | 200           | 20000 | 750           | 60750 |  |  |  |  |  |
| 15                             | 1500 | 220           | 22000 | 800           | 60800 |  |  |  |  |  |
| 18.5                           | 1850 | 250           | 25000 | 1000          | 61000 |  |  |  |  |  |

Table 5.26 Capacities and data

(Example) When the capacity is 2.2 kW

 $2.20 \times 100 = 220 = 00DC_H$  Consequently,

00<sub>H</sub> DC<sub>H</sub>

 $\Rightarrow$ 

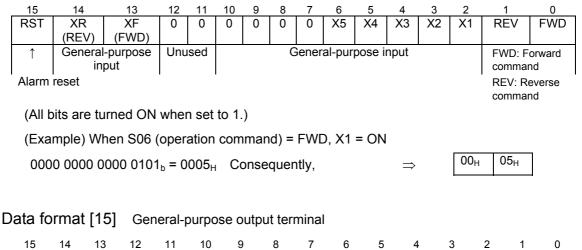
Data format [12] Floating point data (accel./decal. time, PID display coefficient)

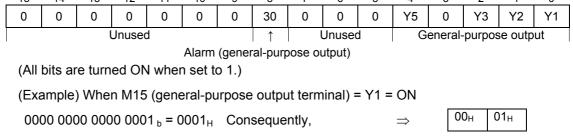
| 15       | 14                                                                        | 13 | 12 | 11   | 10    | 9 | 8 | 7 | 6 | 5   | 4     | 3 | 2 | 1 | 0 |
|----------|---------------------------------------------------------------------------|----|----|------|-------|---|---|---|---|-----|-------|---|---|---|---|
| Polarity | 0                                                                         | 0  | 0  | Expo | onent |   |   | ļ |   | Man | tissa |   | ļ |   |   |
|          | Polarity     0     0     Exponent     Mantissa       L     Unused J     J |    |    |      |       |   |   |   |   |     |       |   |   |   |   |

Polarity:  $0 \rightarrow$  Positive (+),  $1 \rightarrow$  Negative (-) Exponent: 0 to 3 Mantissa: 1 to 999

Value expressed in this form = (polarity) Mantissa x (Exponent - 2) power of 10

| Value        | Mantissa   | Exponent | (Exponent - 2)<br>power of 10 |
|--------------|------------|----------|-------------------------------|
| 0.01 to 9.99 | 1 to 999   | 0        | 0.01                          |
| 10.0 to 99.9 | 100 to 999 | 1        | 0.1                           |
| 100 to 999   | 100 to 999 | 2        | 1                             |
| 1000 to 9990 | 100 to 999 | 3        | 10                            |


(Example) When F07 (acceleration time 1) = 20.0 seconds


20.0 = 200 x 0.1 => 0000 0100 1100 1000<sub>b</sub> = 04C8<sub>H</sub>

 $04C8_{H} \Rightarrow$  Consequently,

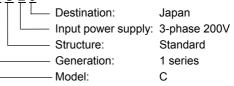
04<sub>H</sub> C8<sub>H</sub>

## Data format [14] Operation command





## Data format [16] Operation status


|      |   |   |    | 11  |     | •   | • |    | • | •   |     | •   | -   |     | 0   |
|------|---|---|----|-----|-----|-----|---|----|---|-----|-----|-----|-----|-----|-----|
| BUSY | 0 | 0 | RL | ALM | DEC | ACC | L | VL | 0 | NUV | BRK | INT | EXT | REV | FWD |

(All bits are turned ON or become active when set to 1.)

- FWD : During forward rotation
- REV : During reverse rotation
- EXT : During DC braking (or during pre-exciting)
- INT : Inverter shut down
- BRK : During braking (fixed to 0 for FRENIC-Mini)
- NUV : DC link circuit voltage established (0 = undervoltage)
- VL : During voltage limiting
- IL : During current limiting
- ACC : During acceleration
- ALM : Alarm relay (for any fault)
- RL : Communications effective
- BUSY : During function code data writing

| 15 14                          | 13                       | 12 <sup>·</sup>          | 11 10                   | 9                       | 8           | 7 | 6 | 5   | 4                  | 3             | 2 1           | 0 |  |
|--------------------------------|--------------------------|--------------------------|-------------------------|-------------------------|-------------|---|---|-----|--------------------|---------------|---------------|---|--|
| Ν                              | lodel                    |                          | Gen                     |                         | Destination |   |   |     | Input power supply |               |               |   |  |
| Table 5.27 List of model codes |                          |                          |                         |                         |             |   |   |     |                    |               |               |   |  |
| Code                           | 1                        | 2                        | 3                       | 4                       | 5           |   | 6 | 7   | 8                  | 9             | А             | В |  |
| Model                          | VG                       | G                        | Р                       | E                       | С           |   | S | DPS | DGS                | H<br>(1667Hz) | H<br>(3000Hz) | F |  |
| Generation                     | 11 series                | 7 series                 | 1 series                |                         |             |   |   |     |                    |               |               |   |  |
| Destination                    | Japan<br>(standard)      | Asia                     | China                   | Europe                  | U.S.A.      | - |   |     |                    |               |               |   |  |
| Input power<br>supply          | Single-<br>phase<br>100V | Single-<br>phase<br>200V | Three-<br>phase<br>200V | Three-<br>phase<br>400V |             |   |   |     |                    |               |               |   |  |

(Example) When the inverter type is FRN1.5<u>C 1 S-2 J</u>



 $\Rightarrow$ 

 $\Rightarrow$ 

Since "model ":C is represented by code 5, "generation": 1 series by code 3, "destination": Japan (standard) by 1, and "input power supply": 3-phase 200V by 3, the model code is  $5313_{\rm H}$ .

## Data format [19] Current value

Data format [17] Model code

Current values are decimal data (positive). The minimum step is 0.01 for an inverter capacity of 22kW (30HP) or less and 0.1 for an inverter capacity of 30kW (40HP) or more.

When inverter capacity is 22kW (30HP) or less, any data higher than 655A cannot be written. No correct value can be read out when a direction for write data higher than 655A is issued.

Current data is rounded down on and after the fifth digit inside the inverter. (Ex.: When a writing direction of 107.54A is issued to an inverter with a capacity of 22kW (30HP), 107.5A is written.)

(Ex.) When F11 (electronic thermal operation level) = 107.0A (40HP)

 $107.0 \times 10 = 1070 = 042E_{H}$ , consequently



(Ex.) When F11 (electronic thermal operation level) = 3.60A (1HP)

 $3.60 \times 10 = 360 = 0168_{H}$ , consequently

01<sub>н</sub> 68<sub>н</sub>

## Data format [20] Communications error

Table 5.28 Communications error codes (common to both protocols)

| Code | Description                                         | Code | Description                                                         |
|------|-----------------------------------------------------|------|---------------------------------------------------------------------|
| 71   | Checksum error, CRC error $\Rightarrow$ No response | 73   | Framing error, overrun error, buffer full $\Rightarrow$ No response |
| 72   | Parity error $\Rightarrow$ No response              |      |                                                                     |

 Table 5.29
 Communications error codes (for Fuji general-purpose inverter protocol)

| Code | Description                          | Code | Description          |
|------|--------------------------------------|------|----------------------|
| 74   | Format error                         | 78   | Function code error  |
| 75   | Command error                        | 79   | Write disabled       |
| 76   | Link priority error                  | 80   | Data error           |
| 77   | Function code data write right error | 81   | Error during writing |

| Table 5.30         Communications error codes (for RTU protocol) |  |
|------------------------------------------------------------------|--|
|------------------------------------------------------------------|--|

| Code | Description                            | Code | Description                                   |
|------|----------------------------------------|------|-----------------------------------------------|
| 1    | Improper 'FC'                          | 3    | Improper data (range error)                   |
| 2    | Improper address (function code error) | 7    | NAK (link priority, no right, write disabled) |

(Example) In case of an improper address

 $2 = 0002_H$  Consequently,

Data format [21] Auto tuning (not supported by FRENIC-Mini)

| _ | 15 | 14 | 13 | 12 | 11 | 10 | 9     | 8    | 7 | 6 | 5 | 4    | 3    | 2 | 1 | 0 |
|---|----|----|----|----|----|----|-------|------|---|---|---|------|------|---|---|---|
| Ē | 0  | 0  | 0  | 0  | 0  | 0  | REV   | FWD  |   |   |   | Data | nart |   |   |   |
| L | Ē  |    |    |    |    |    | 20.10 | part |   |   |   |      |      |   |   |   |

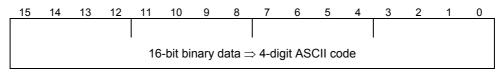
When FWD is 1, this data is the forward rotation command. When REV is 1, this data is the reverse rotation command. However, if both FWD and REV are 1, the command is not effective. Both FWD and REV are 0 for reading.

(Ex.) When P04 (motor 1 automatic tuning) = 1 (forward rotation),

0000 0001 0000  $1001_{b} = 0101_{H}$  Consequently,

01<sub>H</sub> 01<sub>H</sub>

 $\Rightarrow$ 


Data format [22] Frequency data

Decimal data (positive): Resolution 0.01Hz

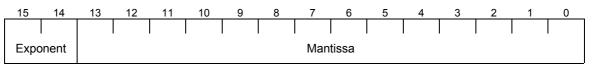
Data format [23] Polarity + decimal data (positive)

(for Fuji general-purpose inverter protocol)

Decimal data (positive): Resolution 0.01Hz



For reverse rotation, add a negative sign (-) (ASCII) to the special additional data in the standard frame, or for forward rotation, enter a space (ASCII).


(Example) When maximum output frequency = 60Hz and M09 (output frequency) = 60.00Hz (forward rotation)

 $\Rightarrow$ 

 $60.00 \times 100 = 6000 = 1770_{H}$  Consequently,

(Positive data is in the same data format as data format [5].)

## Data format [24] Floating point data



Exponent: 0-3 Mantissa: 1 to 9999

The value expressed by this format = the mantissa  $\, \times \, 10^{(exponent-2)}$ 

| Numeric value  | Mantissa     | Exponent | 10 <sup>(exponent-2)</sup> |
|----------------|--------------|----------|----------------------------|
| 0.01 to 99.99  | 1 to 9999    | 0        | 0.01                       |
| 100.0 to 999.9 | 1000 to 9999 | 1        | 0.1                        |
| 1000 to 9999   | 1000 to 9999 | 2        | 1                          |
| 10000 to 99990 | 1000 to 9999 | 3        | 10                         |

## Data format [25] Capacity code (for HP)

As shown in the table below, the capacity (HP) is multiplied by 100.

| Table 5.31 | Capacities and data (for HP  |
|------------|------------------------------|
|            | Capacilies and uala (101 TIF |

|      | Table              | 5.31 Capacities | and data (for HP) |       |               |
|------|--------------------|-----------------|-------------------|-------|---------------|
| Code | Capacity (HP)      | Code            | Capacity (HP)     | Code  | Capacity (HP) |
| 7    | 0.07<br>(reserved) | 3000            | 30                | 40000 | 400           |
| 15   | 0.15<br>(reserved) | 4000            | 40                | 45000 | 450           |
| 25   | 0.25               | 5000            | 50                | 50000 | 500           |
| 50   | 0.5                | 6000            | 60                | 60000 | 600           |
| 100  | 1                  | 7500            | 75                | 60700 | 700           |
| 200  | 2                  | 10000           | 100               | 60750 | 750           |
| 300  | 3                  | 12500           | 125               | 60800 | 800           |
| 500  | 5                  | 15000           | 150               | 60850 | 850           |
| 750  | 7.5                | 17500           | 175               | 60900 | 900           |
| 1000 | 10                 | 20000           | 200               | 60950 | 950           |
| 1500 | 15                 | 25000           | 250               | 61000 | 1000          |
| 2000 | 20                 | 30000           | 300               | 61050 | 1050          |
| 2500 | 25                 | 35000           | 350               |       |               |

(Example) When the capacity is 3HP

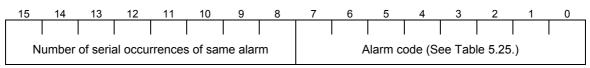
 $3 \times 100 = 300 = 012C_H$  Consequently,

01<sub>Н</sub> 2C<sub>H</sub>  $\Rightarrow$ 

Data format [29] Positive/Negative data of values converted into standard (p.u.) with 20,000 (Example) Speed (frequency) Data of ±20,000/±maximum speed (frequency)

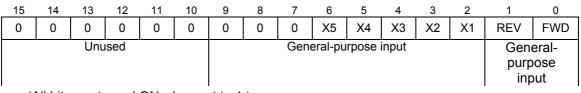
Data format [35] ROM version Range: 0 to 9999

Data format [37] Floating point data (load rotation speed, etc.)


| 15   | 14    | 13 | 12 | 11 | 10 | 9 | 8 | 7   | 6     | 5 | 4 | 3 | 2 | 1 | 0 |
|------|-------|----|----|----|----|---|---|-----|-------|---|---|---|---|---|---|
|      |       |    |    |    |    |   |   |     |       |   |   |   |   |   |   |
| Expo | onent |    |    |    |    |   |   | Man | tissa |   |   |   |   |   |   |

Exponent: 0-3 Mantissa: 1 to 9999

The value expressed by this format = the mantissa  $\,\times\,\,$  10<sup>(exponent-2)</sup>


| Numeric value  | Mantissa     | Exponent | 10 <sup>(exponent-2)</sup> |
|----------------|--------------|----------|----------------------------|
| 0.01 to 99.99  | 1 to 9999    | 0        | 0.01                       |
| 100.0 to 999.9 | 1000 to 9999 | 1        | 0.1                        |
| 1000 to 9999   | 1000 to 9999 | 2        | 1                          |
| 10000 to 99990 | 1000 to 9999 | 3        | 10                         |

#### Data format [41] Alarm history



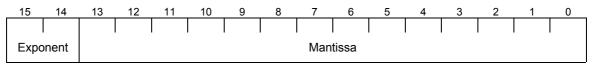
Indicates the content of an alarm that has occurred and the number of serial occurrence times of the alarm.

#### Data format [43] Operation command (for I/O check)



(All bits are turned ON when set to 1.)

#### Data format [44] Operation status 2


|   |   |     |    | 11  |      |    |     |     |    |    |     |   |     |     |     |
|---|---|-----|----|-----|------|----|-----|-----|----|----|-----|---|-----|-----|-----|
| 0 | 0 | IDL | ID | OLP | LIFE | ОН | TRY | FAN | KP | OL | IPF | 0 | RDY | FDT | FAR |

(All bits are turned ON or become active when set to 1.)

- FAR: Frequency arrival signal
- FDT: Frequency level detection
- RDY: Inverter ready to run
- IPF: Auto-restarting after recovery of power
- OL: Motor overload early warning
- KP: Running per keypad
- FAN: Cooling fan in operation
- TRY: Retry in operation
- OH: Heat sink overheat early warning
- LIFE: Lifetime alarm
- OLP: Overlaod prevention control
- ID: Current detection
- IDL: Low level current detection

However, RDY, KP, FAN, and OH are not supported by FRENIC-Mini.

#### Data format [45] Floating point data



#### Exponent: 0-3 Mantissa: 1 to 9999

The value expressed by this format = the mantissa  $\times$  10<sup>(exponent-3)</sup>

| Numeric value  | Mantissa     | Exponent | 10 <sup>(exponent-3)</sup> |
|----------------|--------------|----------|----------------------------|
| 0.001 to 9.999 | 1 to 9999    | 0        | 0.001                      |
| 10.0 to 99.9   | 1000 to 9999 | 1        | 0.01                       |
| 100.0 to 999.9 | 1000 to 9999 | 2        | 0.1                        |
| 1000 to 9999   | 1000 to 9999 | 3        | 1                          |



## User's Manual for RS485 Communications Card

First edition: October 2002 Second edition: September 2004

Fuji Electric FA Components & Systems Co., Ltd.

- We prepared and examined the contents of this manual with extreme care. However, if you have any questions or notice errors, omissions, misprints, etc., please contact us.
- We are not responsible for any effects of the results caused by the operation of this product, irrespective of such errors, omissions, misprints, etc. as described above.

# Fuji Electric FA Components & Systems Co., Ltd.

Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome Shinagawa-ku, Tokyo 141-0032, Japan Phone: +81-3-5435-7139 Fax: +81-3-5435-7458

Information in this manual is subject to change without notice.